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Finite State Machines

• Functional decomposition into states of operation

• Typical domains of application:

– control functions 

– protocols (telecom, computers, ...)

• Different communication mechanisms:

– synchronous 
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– (classical FSMs, Moore ‘64,  Kurshan ‘90)

– asynchronous

– (CCS, Milner ‘80; CSP, Hoare ‘85)

FSM Example

• Informal specification:

– If the driver 

– turns on the key, and

– does not fasten the seat belt within 5 seconds

– then an alarm beeps

– for 5 seconds, or

til th d i f t th t b lt
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– until the driver fastens the seat belt, or 

– until the driver turns off the key
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FSM Example

KEY_ON => START_TIMER
WAIT

END_TIMER_5 => 
ALARM_ON

KEY_OFF or
BELT _ON =>

END_TIMER_10 or
BELT ON 

OFF
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BELT_ON or
KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

ALARM

FSM Definition
– FSM = ( I, O, S, r, δ, λ )

– I = { KEY_ON, KEY_OFF,  BELT_ON, END_TIMER_5, 
END TIMER 10 }END_TIMER_10 }

– O = { START_TIMER, ALARM_ON, ALARM_OFF }

– S = { OFF, WAIT, ALARM }

– r = OFF

� δ 2I S  S

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent
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� δ : 2I × S → S 
e.g. δ( { KEY_OFF }, WAIT ) = OFF

� λ  : 2I × S → 2O

e.g. λ ( { KEY_ON }, OFF ) = { START_TIMER }
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Non-deterministic FSMs

δ and λ  may be relations  instead of  functions:

δ ⊆ 2I × S × Sδ ⊆ 2 S S 

e.g. δ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}

λ ⊆ 2I × S × 2O

• Non-determinism can be used to describe:

– an unspecified behavior
(i l t ifi ti )

implicit “and” implicit “or”
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(incomplete specification)

– an unknown behavior
(environment modeling)

• E.g. error checking first partially specified:

NDFSM: incomplete specification

• Then completed as even parity:

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>
...

SYNC =>

not BIT =>
BIT > ERR 

0 1 7 8

1 7
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BIT =>

not BIT =>

not BIT => ERR
...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

BIT =>

BIT => 

BIT => ERR p1 p7

d7d10 8
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NDFSM: unknown behavior

• Modeling the environment

• Useful to:
– optimize (don’t care conditions)

– verify (exclude impossible cases)

• E.g. driver model:

=> KEY_ON or 
KEY_OFF  or
BELT ON

EE249Fall07

• Can be refined
– E.g. introduce timing constraints

– (minimum reaction time 0.1 s)

s0 BELT_ON

NDFSM: time range

• Special case of unspecified/unknown behavior, but so common 
to deserve special treatment for efficiency

• E.g. delay between 6 and 10 s

0

1 2 3 4
START => SEC => SEC => SEC =>

SEC =>
START =>
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0
5

6

78

9

SEC => END

SEC =>

SEC =>
SEC =>

SEC =>

SEC => 
END

SEC => END

SEC => 
END
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NDFSMs and FSMs

• Formally FSMs and NDFSMs are equivalent 

– (Rabin-Scott construction, Rabin ‘59)

• In practice, NDFSMs are often more compact

– (exponential blowup for determinization)

s1
s1

a c a
cc
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s2 s3
s2,s3

a
b

a

s3
b

a

s2

ba

s1,s3
c

a

Finite State Machines

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– synthesis (SW and HW)

– verification

• Disadvantages:
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– Sometimes over-specify implementation

– (sequencing is fully specified)

– Number of states can be unmanageable

– Numerical computations cannot be specified compactly (need 
Extended FSMs)



The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop 
June 17th-18th, 2001

Page 6

Modeling Concurrency

• Need to compose parts described by FSMs

• Describe the system using a number of FSMs and interconnect 
them

• How do the interconnected FSMs talk to each other?
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FSM Composition

• Bridle complexity via hierarchy: FSM product yields an FSM

• Fundamental hypothesis: 

– all the FSMs change state together (synchronicity)all the FSMs change state together (synchronicity)

• System state = Cartesian product of component states

– (state explosion may be a problem...)

• E.g. seat belt control + timer

START TIMER >
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0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC => 
END_10_SEC

SEC => SEC =>
SEC =>
END_5_SEC

SEC =>SEC =>SEC =>SEC =>
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FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER => 
START_TIMER must be coherent

SEC and OFF, 0 WAIT, 1

WAIT, 2

not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and 
(KEY_OFF or BELT_ON) =>

SEC and 
(KEY_OFF or BELT_ON) =>
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OFF, 2

Belt

Control
Timer

FSM Composition

Given 

M1 = ( I1, O1, S1, r1, δ1, λ1 ) and 

M2 = ( I2, O2, S2, r2, δ2, λ2 )

Find the composition

M = ( I, O, S, r, δ, λ )

given a set of constraints of the form:
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C = { ( o, i1, … , in ) : o is connected to i1, … , in }
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FSM Composition

• Unconditional product M’ = ( I’, O’, S’, r’, δ’, λ’ )

– I’ = I1 U I2
– O’ = O1 U O2

– S’ = S1 x S2

– r’ = r1 x r2

δ’ = { ( A1, A2, s1, s2, t1, t2 ) :  ( A1, s1, t1 ) ε δ1 and                                     
( A2, s2, t2 ) ε δ2 }

λ’ = { ( A1, A2, s1, s2, B1, B2 ) :  ( A1, s1, B1 ) ε λ1 and                                        
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( A2, s2, B2 ) ε λ2 }

• Note:

– A1 ⊆ I1,  A2 ⊆ I2,  B1 ⊆ O1,  B2 ⊆ O2

– 2X U Y = 2X x 2Y

FSM Composition

• Constraint application

λ { ( A A B B ) λ’ f ll ( i i ) C B B if dλ = { ( A1, A2, s1, s2, B1, B2 ) ε λ’ : for all ( o, i1, … , in ) ε C      o ε B1 U B2 if and 
only if   ij ε A1 U A2 for all j }

• The application of the constraint rules out the cases where the 
connected input and output have different values (present/absent).

EE249Fall07
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I = I1 ∪ I2 

O = O1 ∪ O2

FSM Composition

FSM1 FSM2

i1 i2
oS = S1 × S2

Assume that 
o1 ∈O1, i3 ∈I2, o1 = i3 (communication)

δ and λ  are such that, e.g., for each pair:

δ1( { i1 }, s1 ) = t1,    λ1( { i1 }, s1 ) = { o1 }

1 2

i3o
1

o
2
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δ2( { i2, i3 }, s2 ) = t2,    λ2( { i2 , i3 }, s2 ) = { o2 }

we have:

δ( { i1, i2, i3 }, ( s1, s2 ) ) = ( t1, t2 )

λ( { i1, i2, i3 }, ( s1, s2 ) ) = { o1, o2 }

i.e. i3 is in input pattern iff o2 is in output pattern

• Problem: what if there is a cycle?

– Moore machine: δ depends on input and state, λ only on state

FSM Composition

composition is always well-defined

– Mealy machine: δ and λ depend on input and state 
composition may be undefined
what if λ1( { i1 }, s1) = { o1 } but o2 ∉ λ2( { i3 }, s2 ) ?

FSM FSM
i1 i3o1 o2

EE249Fall07
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• Causality analysis in Mealy FSMs (Berry ‘98)

FSM1 FSM2
2
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Moore vs. Mealy

• Theoretically, same computational power (almost)

• In practice, different characteristics

• Moore machines:

– non-reactive 
(response delayed by 1 cycle)

– easy to compose 
(always well defined)
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(always well-defined)

– good for implementation

– software is always “slow”

– hardware is better when I/O is latched

Moore vs. Mealy

• Mealy machines:

– reactive 
(0 response time)

– hard to compose 
(problem with combinational cycles)

– problematic for implementation

– software must be “fast enough” 

EE249Fall07
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g
(synchronous hypothesis)

– may be needed in hardware, for speed
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Hierarchical FSM models

• Problem: how to reduce the size of the representation? 

• Harel’s classical papers on StateCharts (language) and bounded 
concurrency (model): 3 orthogonal exponential reductionsconcurrency (model): 3 orthogonal exponential reductions

• Hierarchy:

– state a “encloses” an FSM

– being in a means  FSM in a is active

– states of a are called OR states

– used to model pre-emption and exceptions

a
odd

even
a1 a2
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• Concurrency: 

– two or more FSMs are simultaneously active

– states are called AND states

• Non-determinism:

– used to abstract behavior

error

recovery

done

Models Of Computation for reactive 
systems

• Main MOCs:

– Communicating Finite State Machines

– Dataflow Process Networks

– Petri Nets

– Discrete Event

– Codesign Finite State Machines

EE249Fall07
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• Main languages:

– StateCharts

– Esterel

– Dataflow networks
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StateCharts

• An extension of conventional FSMs

• Conventional FSMs are inappropriate for the behavioral description of 
complex controlcomplex control

– flat and unstructured

– inherently sequential in nature

• StateCharts supports repeated decomposition of states into sub-states in an 
AND/OR fashion, combined with a synchronous (instantaneous broadcast) 
communication mechanism 

EE249Fall07
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State Decomposition

• OR-States have sub-states that are related to each other by 
l iexclusive-or

• AND-States have orthogonal state components (synchronous 
FSM composition)

– AND-decomposition can be carried out on any level of states (more 
convenient than allowing only one level of communicating FSMs)

• Basic States have no sub-states (bottom of hierarchy)

EE249Fall07
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( y)

• Root State : no parent states (top of hierarchy) 
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StateChart OR-decomposition

To be  in state U the system must
be either in state S or in state T

S

V

S

V

f

f

e

e

g g

U
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T Tf
h

h

StateChart AND-decomposition

V,W

V.Y
VZ

U

S T

k
To be  in state U the system 
must be both in states S and T

V,Z

V

W

X

X,Y
X.Z

Z

Y

S T
k

e

e

e
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X,W

R

Q

RQ
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StateCharts Syntax

• The general syntax of an expression labeling a transition in a StateChart is   
e[c]/a ,where 

– e is the event that triggers the transitione is the event that triggers the transition

– c is the condition that guards the transition 
(cannot be taken unless c is true when e occurs)

– a is  the action that is carried out if and when the transition is taken

• For each transition label:

– event condition and action are optional

t b th h i f l

EE249Fall07
27

– an event can be the changing of a value

– standard comparisons are allowed as conditions and assignment statements as 
actions

StateCharts Actions and Events

• An action a on the edge leaving a state may also appear as an event 
triggering a transition going into an orthogonal state: 

– a state transition broadcasts an event visible immediately to all othera state transition broadcasts an event visible immediately to all other 
FSMs, that can make transitions immediately and so on

– executing the first transition will immediately cause the second transition 
to be taken simultaneously

• Actions and events may be associated to the execution of orthogonal 
components : start(A) , stopped(B)

EE249Fall07
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Graphical Hierarchical FSM Languages

• Multitude of commercial and non-commercial variants:

– StateCharts, UML, StateFlow, …

• Easy to use for control-dominated systems

• Simulation (animated), SW and HW synthesis

• Original StateCharts have problems with causality loops and 
instantaneous events:

EE249Fall07
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– circular dependencies can lead to paradoxes

– behavior is implementation-dependent 

– not a truly synchronous language

• Hierarchical states necessary for complex reactive system 
specification

Synchronous vs. Asynchronous FSMs

• Synchronous (Esterel, StateCharts): 

– communication by shared variables that are read and written in zero 
time

– communication and computation happens instantaneously at 
discrete time instants

– all FSMs make a transition simultaneously (lock-step)

– may be difficult to implement 

EE249Fall07
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y p

– multi-rate specifications 

– distributed/heterogeneous architectures
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Synchronous vs. Asynchronous FSMs

• A-synchronous FSMs:

– free to proceed independently

– do not execute a transition at the same time (except for CSP 
rendezvous)

– may need to share notion of time: synchronization

– easy to implement

EE249Fall07
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Synchronization

Base station - Base station

Base station - Mobile stations

EE249Fall07
32

Base station - Mobile station
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Handover

• A Mobile Station moving across the cell boundary needs to maintain active 

EE249Fall07
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connections without interruptions or degradations

• Handover

– tight inter-base-station synchronization (in GSM achieved using GPS)

– asynchronous base station operation (UMTS)

Frame Synchronization

• Medium Access Control Layer: TDMA 

– each active connection is assigned a number of time slots (channel)

EE249Fall07
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each active connection is assigned a number of time slots (channel)

• A common notion of time is needed

– each Base Station sends a frame synchronization pilot (FS) at the beginning of 
every frame to ensure that all Mobile Stations have the same slot counts

FS 0 1 2 3 4 5 6 7 8 FS 0 1 2 3 4 5 6 7 8 ...



The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop 
June 17th-18th, 2001

Page 18

Bit Synchronization

• Transmitter interleaves the payload data with a pilot sequence known 
by the receiver
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• Receiver extracts the clock from the pilot sequence and uses it to 
sample the payload data. 

PS PD PS PD ...

RX

Asynchronous communication

• Blocking vs. non-Blocking
A B

– Blocking read

– process can not test for emptiness of input

– must wait for input to arrive before proceed

– Blocking write

– process must wait for successful write before continue 

bl ki it /bl ki d (CSP CCS)

A B

EE249Fall07
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– blocking write/blocking read (CSP, CCS)

– non-blocking write/blocking read (FIFO, CFSMs, SDL)

– non-blocking write/non-blocking read (shared variables)
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Asynchronous communication 

• Buffers used to adapt when sender and receiver have different 
raterate
– what size?

• Lossless vs. lossy
– events/tokens may be lost

– bounded memory: overflow or overwriting

– need to block the sender

A B

EE249Fall07
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• Single vs. multiple read
– result of each write can be read at most once or several times

Communication Mechanisms

• Rendez-Vous (CSP)

– No space is allocated for the data, processes need to synchronize in 
some specific points to exchange data

– Read and write occur simultaneously

• FIFO 

– Bounded (ECFSMs, CFSMs)

EE249Fall07
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– Unbounded (SDL, ACFSMs, Kahn Process Networks, Petri Nets)

• Shared memory

– Multiple non-destructive reads are possible

– Writes delete previously stored data
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Communication models

Transmitters Receivers
Buffer
Si e

Blocking 
Reads

Blocking 
Writes

Single
Reads

Unsynchronized

Read-Modify-write

Unbounded FIFO

Bounded FIFO

Transmitters

many

many

one

one

Receivers

many

many

one

one

Size

one

one

unbounded

bounded

Reads

no

yes

yes

no

Writes

no

yes

no

maybe

Reads

no

no

yes

yes
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Single Rendezvous

Multiple Rendezvous

one

many

one

many

one

one

yes

no

yes

no

yes

yes

Outline

Part 3: Models of Computation• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

Petri Nets
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– Petri Nets 

– The Tagged Signal Model
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Discrete Event

• Explicit notion of time (global order…)

• Events can happen at any time asynchronously

• As soon as an input appears at a block, it may be executed

• The execution may take non zero time, the output is marked with 
a time that is the sum of the arrival time plus the execution time

• Time determines the order with which events are processed

• DE simulator maintains a global event queue (Verilog and 
VHDL)
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VHDL)

• Drawbacks

– global event queue => tight coordination between parts

– Simultaneous events => non-deterministic behavior

– Some simulators use delta delay to prevent non-determinacy

Simultaneous Events in DE 

AA BB CC
tt

tt

Fire B or C?
AA BB CC

AA BB CC

tt

AA BB CC

tt

tt

B has 0 delay B has delta delay

t+t+

EE249Fall07
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AA BB CC AA BB CC
Fire C once? or twice? Fire C twice.

Still have problem with 0-delay 
(causality) loop

Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)
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Outline

Part 3: Models of Computation• Part 3: Models of Computation

– FSMs

– Discrete Event Systems 

– CFSMs

– Data Flow Models

Petri Nets

EE249Fall07
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– Petri Nets 

– The Tagged Signal Model

Co-Design Finite State Machines:
Combining FSM and Discrete Event

• Synchrony and asynchrony

• CFSM definitions

– Signals & networks

– Timing behavior

– Functional behavior

• CFSM & process networks

EE249Fall07
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• Example of CFSM behaviors

– Equivalent classes
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Codesign Finite State Machine

• Underlying MOC of Polis and VCC

• Combine aspects from several other MOCs

• Preserve formality and efficiency in implementation

• Mix 

– synchronicity

– zero and infinite time

EE249Fall07
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– asynchronicity

– non-zero, finite, and bounded time

• Embedded systems often contain both aspects

Synchrony: Basic Operation

• Synchrony is often implemented with clocks

• At clock ticks

– Module reads inputs, computes, and produce output

– All synchronous events happen simultaneously

– Zero-delay computations

• Between clock ticks

EE249Fall07
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– Infinite amount of time passed
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Synchrony: Basic Operation (2)

• Practical implementation of synchrony

– Impossible to get zero or infinite delay

– Require:  computation time <<< clock period

– Computation time = 0, w.r.t. reaction time of environment

• Feature of synchrony

– Functional behavior independent of timing

EE249Fall07
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– Simplify verification

– Cyclic dependencies may cause problem

– Among (simultaneous) synchronous events

Synchrony: 
Triggering and Ordering

• All modules are triggered at each clock tick

• Simultaneous signals

– No a priori ordering

– Ordering may be imposed by dependencies

– Implemented with delta steps

EE249Fall07
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computation

continuous time

ticks

delta steps
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Synchrony: 
System Solution

• System solution

– Output reaction to a set of inputs

• Well-designed system:

– Is completely specified and functional

– Has an unique solution at each clock tick

– Is equivalent to a single FSM

EE249Fall07
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– Allows efficient analysis and verification

• Well-designed-ness 

– May need to be checked for each design (Esterel)

– Cyclic dependency among simultaneous events 

Synchrony: 
Implementation Cost

• Must verify synchronous assumption on final design

– May be expensive

• Examples:

– Hardware

– Clock cycle > maximum computation time

– Inefficient for average case

EE249Fall07
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– Software 

– Process must finish computation before

– New input arrival

– Another process needs to start computation
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Pure Asynchrony: 
Basic Operation

• Events are never simultaneous

– No two events have the same tag

• Computation starts at a change of the input

• Delays are arbitrary, but bounded

EE249Fall07
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Asynchrony: 
Triggering and Ordering

• Each module is triggered to run at a change of input

• No a priori ordering among triggered modules

– May be imposed by scheduling at implementation

EE249Fall07
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Asynchrony: 
System Solution

• Solution strongly dependent on input timing

• At implementation

– Events may “appear” simultaneous

– Difficult/expensive to maintain total ordering

– Ordering at implementation decides behavior

– Becomes DE, with the same pitfalls

EE249Fall07
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Asynchrony: 
Implementation Cost

• Achieve low computation time (average)

– Different parts of the system compute at different rates

• Analysis is difficult

– Behavior depends on timing

– Maybe be easier for designs that are insensitive to 

– Internal delay

EE249Fall07
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– External timing
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Asynchrony vs. Synchrony in System Design

• They are different at least at

– Event buffering

– Timing of event read/write

• Asynchrony

– Explicit buffering of events for each module

– Vary and unknown at start-time

EE249Fall07
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• Synchrony

– One global copy of event

– Same start time for all modules

Combining 
Synchrony and Asynchrony

• Wants to combine

– Flexibility of asynchrony 

– Verifiability of synchrony 

• Asynchrony

– Globally, a timing independent style of thinking 

• Synchrony

EE249Fall07
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– Local portion of design are often tightly synchronized

• Globally asynchronous, locally synchronous

– CFSM networks
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CFSM Overview

• CFSM is FSM extended with

– Support for data handling

– Asynchronous communication

• CFSM has

– FSM part

– Inputs, outputs, states, transition and output relation

EE249Fall07
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– Data computation part

– External, instantaneous functions

CFSM Overview (2)

• CFSM has:

– Locally synchronous behavior

– CFSM executes based on snap-shot input assignment

– Synchronous from its own perspective

– Globally asynchronous behavior

– CFSM executes in non-zero, finite amount of time

A h f t ti
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– Asynchronous from system perspective

• GALS model

– Globally: Scheduling mechanism

– Locally: CFSMs
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Network of CFSMs: Depth-1 Buffers

• Globally Asynchronous, Locally Synchronous (GALS) model

CFSM2

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

C=>ACFSM1 CFSM2

F

G

C
C

C=>G

EE249Fall07
CFSM3

(A==0)=>B
C=>B

B
A C=>B

Introducing a CFSM

• A Finite State Machine

• Input events, output events and state events

• Initial values (for state events)

• A transition function

Transitions may involve complex, memory-less, instantaneous
arithmetic and/or Boolean functions
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All the state of the system is under form of events

• Need rules that define the CFSM behavior
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CFSM Rules: phases

• Four-phase cycle:

Idle

Detect input events

Execute one transition

Emit output events

• Discrete time
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– Sufficiently accurate for synchronous systems

– Feasible formal verification

• Model semantics: Timed Traces i.e. sequences of events 
labeled by time of occurrence

CFSM Rules: phases

• Implicit unbounded delay between phases

• Non-zero reaction time 

(avoid inconsistencies when interconnected)

• Causal model based on partial order

(global asynchronicity)

potential verification speed up
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– potential verification speed-up

• Phases may not overlap

• Transitions always clear input buffers

(local synchronicity)
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Communication Primitives

• Signals

– Carry information in the form of events and/or values

– Event signals: present/absence

– Data signals: arbitrary values

– Event, data may be paired

– Communicate between two CFSMs

1 input buffer / signal / receiver
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– 1 input buffer / signal / receiver

– Emitted by a sender CFSM

– Consumed by a receiver CFSM by setting buffer to 0

– “Present” if emitted but not consumed

Communication Primitives (2)

• Input assignment

– A set of values for the input signals of a CFSM

• Captured input assignment

– A set of input values read by a CFSM at a particular time

• Input stimulus

– Input assignment with at least one event present
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Signals and CFSM

• CFSM

– Initiates communication through events

– Reacts only to input stimulus

– except initial reaction

– Writes data first, then emits associated event

– Reads event first, then reads associated data

EE249Fall07
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CFSM networks

• Net

– A set of connections on the same signal

– Associated with single sender and multiple receivers

– An input buffer for each receiver on a net

– Multi-cast communication

• Network of CFSMs
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– A set of CFSMs, nets, and a scheduling mechanism

– Can be implemented as

– A set of CFSMs in SW (program/compiler/OS/uC)

– A set of CFSMs in HW (HDL/gate/clocking)

– Interface (polling/interrupt/memory-mapped)
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Scheduling Mechanism

• At the specification level

– Should be as abstract as possible to allow optimization

– Not fixed in any way by CFSM MOC

• May be implemented as

– RTOS for single processor
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– Concurrent execution for HW

– Set of RTOSs for multi-processor

– Set of scheduling FSMs for HW

Timing Behavior 

• Scheduling Mechanism

– Globally controls the interaction of CFSMs

– Continually deciding which CFSMs can be executed

• CFSM can be

– Idle

– Waiting for input events
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– Waiting to be executed by scheduler

– Executing

– Generate a single reaction

– Reads its inputs, computes, writes outputs
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Timing Behavior: Mathematical Model

• Transition Point

– Point in time a CFSM starts executing

• For each execution

– Input signals are read and cleared

– Partial order between input and output

– Event is read before data
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– Data is written before event emission

Timing Behavior: Transition Point

• A transition point ti

– Input may be read between ti and ti+1

– Event that is read may have occurred between ti-1 and ti+1

– Data that is read may have occurred between t0 and ti+1

– Outputs are written between ti and ti+1

EE249Fall07
70

• CFSM allow loose synchronization of event & data

– Less restrictive implementation

– May lead to non intuitive behavior
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Event/Data Separation

Sender S

Write v1 Emit Write v2 Emit

Sender S

Receiver R

t1ti-1 t2 ti t3 t4 ti+1

Read Event Read Value
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t1ti 1 t2 ti t3 t4 ti+1

• Value v1 is lost even though

– It is sent with an event

– Event may not be lost

• Need atomicity

Atomicity

• Group of actions considered as a single entity

• May be costly to implement

• Only atomicity requirement of CFSM

– Input events are read atomically

– Can be enforced in SW (bit vector) HW (buffer)

– CFSM is guaranteed to see a snapshot of input events
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• Non-atomicity of event and data

– May lead to undesirable behavior

– Atomicized as an implementation trade-off decision
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Non Atomic Data Value Reading

Sender S

X:=4
Y:=4 X:=5 Y:=5

R i R1 t (X 4 Y 5) R2 t (X 5 Y 4)

Sender S

Receiver R1

t1 t2 t3 t4 t5 t6

Receiver R2

Read X

Read X Read Y

Read Y

EE249Fall07
73

• Receiver R1 gets (X=4, Y=5), R2 gets (X=5 Y=4)

• X=4 Y=5 never occurs

• Can be remedied if values are sent with events

– still suffers from separation of data and event

t1 t2 t3 t4 t5 t6

Atomicity of Event Reading

Sender S

Emit X Emit Y

R d

• R1 sees no events R2 sees X R3 sees X Y

Receiver R1

t1 t2 t3 t4 t5

Receiver R2

Receiver R3

Read

Read

Read

EE249Fall07
74

• R1 sees no events, R2 sees X, R3 sees X, Y

• Each sees a snapshot of events in time

• Different captured input assignment

– Because of scheduling and delay
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Functional Behavior

• Transition and output relations

– input, present_state, next_state, output

• At each execution, a CFSM

– Reads a captured input assignment

– If there is a match in transition relation

– consume inputs, transition to next_state, write outputs
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– Otherwise

– consume no inputs, no transition, no outputs

Functional Behavior (2)

• Empty Transition

– No matching transition is found

• Trivial Transition

– A transition that has no output and no state changes

– Effectively throw away inputs
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• Initial transition

– Transition to the init (reset) state

– No input event needed for this transition



The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop 
June 17th-18th, 2001

Page 39

CFSM and Process Networks

• CFSM

– An asynchronous extended FSM model

– Communication via bounded non-blocking buffers

– Versus CSP and CCS (rendezvous)

– Versus SDL (unbounded queue & variable topology)

– Not continuous in Kahn’s sense

EE249Fall07
77

– Different event ordering may change behavior

– Versus dataflow (ordering insensitive)

CFSM Networks

• Defined based on a global notion of time

– Total order of events

– Synchronous with relaxed timing

– Global consistent state of signals is required

– Input and output are in partial order
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Buffer Overwrite

• CFSM Network has

– Finite Buffering

– Non-blocking write

– Events can be overwritten

– if the sender is “faster” than receiver

• To ensure no overwrite
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• To ensure no overwrite

– Explicit handshaking mechanism

– Scheduling

Example of CFSM Behaviors

A
i

i1

err o

• A and B produce i1 and i2 at every i

• C produce err or o at every i1,i2

B

C

i2

EE249Fall07
80

• Delay (i to o) for normal operation is nr, err operation 2nr

• Minimum input interval is ni

• Intuitive “correct” behavior

– No events are lost
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Equivalent Classes of CFSM Behavior

• Assume parallel execution (HW, 1 CFSM/processor)

• Equivalent classes of behaviors are:

– Zero Delay

– nr= 0

– Input buffer overwrite

– ni<nr
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– Time critical operation

– ni/2<nr≤ni

– Normal operation 

– nr<ni/2

Equivalent Classes of CFSM Behavior (2)

• Zero delay:  nr= 0 

– If C emits an error on some input

– A, B can react instantaneously & output differently

– May be logically inconsistent

• Input buffers  overwrite: ni<nr 
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– Execution delay of A, B is larger than arrival interval

– always loss of event 

– requirements not satisfied
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Equivalent Classes of CFSM Behavior (3)

• Time critical operation: ni/2<nr≤ni

– Normal operation results in no loss of event

– Error operation may cause lost input

• Normal operation: nr<ni/2

– No events are lost

– May be expensive to implement
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• If error is infrequent

– Designer may accept also time critical operation

– Can result in lower-cost implementation

Equivalent Classes of CFSM Behavior (4)

• Implementation on a single processor

– Loss of Event may be caused by

– Timing constraints

– ni<3nr

– Incorrect scheduling

– If empty transition also takes nr

ACBC round robin will miss event
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– ACBC round robin will miss event
– ABC round robin will not
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Some Possibility of Equivalent Classes

• Given 2 arbitrary implementations, 1 input stream:

– Dataflow equivalence

– Output streams are the same ordering

– Petri net equivalence

– Output streams satisfy some partial order

– Golden model equivalence
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– Output streams have the same ordering

– Except reordering of concurrent events

– One of the implementations is a reference specification

– Filtered equivalence

– Output streams are the same after filtered by observer

Conclusion

• CFSM

– Extension: ACFSM: Initially unbounded FIFO buffers

– Bounds on buffers are imposed by refinement to yield ECFSM

– Delay is also refined by implementation

– Local synchrony

– Relatively large atomic synchronous entities
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– Global asynchrony

– Break synchrony, no compositional problem

– Allow efficient mapping to heterogeneous architectures


