
The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 1

Finite State Machines

• Functional decomposition into states of operation

• Typical domains of application:

– control functions

– protocols (telecom, computers, ...)

• Different communication mechanisms:

– synchronous

EE249Fall07
1

– (classical FSMs, Moore ‘64, Kurshan ‘90)

– asynchronous

– (CCS, Milner ‘80; CSP, Hoare ‘85)

FSM Example

• Informal specification:

– If the driver

– turns on the key, and

– does not fasten the seat belt within 5 seconds

– then an alarm beeps

– for 5 seconds, or

til th d i f t th t b lt

EE249Fall07
2

– until the driver fastens the seat belt, or

– until the driver turns off the key

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 2

FSM Example

KEY_ON => START_TIMER
WAIT

END_TIMER_5 =>
ALARM_ON

KEY_OFF or
BELT _ON =>

END_TIMER_10 or
BELT ON

OFF

EE249Fall07
3

BELT_ON or
KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

ALARM

FSM Definition
– FSM = (I, O, S, r, δ, λ)

– I = { KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5,
END TIMER 10 }END_TIMER_10 }

– O = { START_TIMER, ALARM_ON, ALARM_OFF }

– S = { OFF, WAIT, ALARM }

– r = OFF

� δ 2I S S

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent

EE249Fall07
4

� δ : 2I × S → S
e.g. δ({ KEY_OFF }, WAIT) = OFF

� λ : 2I × S → 2O

e.g. λ ({ KEY_ON }, OFF) = { START_TIMER }

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 3

Non-deterministic FSMs

δ and λ may be relations instead of functions:

δ ⊆ 2I × S × Sδ ⊆ 2 S S

e.g. δ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}

λ ⊆ 2I × S × 2O

• Non-determinism can be used to describe:

– an unspecified behavior
(i l t ifi ti)

implicit “and” implicit “or”

EE249Fall07
5

(incomplete specification)

– an unknown behavior
(environment modeling)

• E.g. error checking first partially specified:

NDFSM: incomplete specification

• Then completed as even parity:

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>
...

SYNC =>

not BIT =>
BIT > ERR

0 1 7 8

1 7

EE249Fall07
6

BIT =>

not BIT =>

not BIT => ERR
...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

BIT =>

BIT =>

BIT => ERR p1 p7

d7d10 8

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 4

NDFSM: unknown behavior

• Modeling the environment

• Useful to:
– optimize (don’t care conditions)

– verify (exclude impossible cases)

• E.g. driver model:

=> KEY_ON or
KEY_OFF or
BELT ON

EE249Fall07

• Can be refined
– E.g. introduce timing constraints

– (minimum reaction time 0.1 s)

s0 BELT_ON

NDFSM: time range

• Special case of unspecified/unknown behavior, but so common
to deserve special treatment for efficiency

• E.g. delay between 6 and 10 s

0

1 2 3 4
START => SEC => SEC => SEC =>

SEC =>
START =>

EE249Fall07
8

0
5

6

78

9

SEC => END

SEC =>

SEC =>
SEC =>

SEC =>

SEC =>
END

SEC => END

SEC =>
END

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 5

NDFSMs and FSMs

• Formally FSMs and NDFSMs are equivalent

– (Rabin-Scott construction, Rabin ‘59)

• In practice, NDFSMs are often more compact

– (exponential blowup for determinization)

s1
s1

a c a
cc

EE249Fall07

s2 s3
s2,s3

a
b

a

s3
b

a

s2

ba

s1,s3
c

a

Finite State Machines

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– synthesis (SW and HW)

– verification

• Disadvantages:

EE249Fall07
10

– Sometimes over-specify implementation

– (sequencing is fully specified)

– Number of states can be unmanageable

– Numerical computations cannot be specified compactly (need
Extended FSMs)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 6

Modeling Concurrency

• Need to compose parts described by FSMs

• Describe the system using a number of FSMs and interconnect
them

• How do the interconnected FSMs talk to each other?

EE249Fall07
11

FSM Composition

• Bridle complexity via hierarchy: FSM product yields an FSM

• Fundamental hypothesis:

– all the FSMs change state together (synchronicity)all the FSMs change state together (synchronicity)

• System state = Cartesian product of component states

– (state explosion may be a problem...)

• E.g. seat belt control + timer

START TIMER >

EE249Fall07
12

0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC =>
END_10_SEC

SEC => SEC =>
SEC =>
END_5_SEC

SEC =>SEC =>SEC =>SEC =>

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 7

FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER =>
START_TIMER must be coherent

SEC and OFF, 0 WAIT, 1

WAIT, 2

not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and
(KEY_OFF or BELT_ON) =>

SEC and
(KEY_OFF or BELT_ON) =>

EE249Fall07
13

OFF, 2

Belt

Control
Timer

FSM Composition

Given

M1 = (I1, O1, S1, r1, δ1, λ1) and

M2 = (I2, O2, S2, r2, δ2, λ2)

Find the composition

M = (I, O, S, r, δ, λ)

given a set of constraints of the form:

EE249Fall07
14

C = { (o, i1, … , in) : o is connected to i1, … , in }

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 8

FSM Composition

• Unconditional product M’ = (I’, O’, S’, r’, δ’, λ’)

– I’ = I1 U I2
– O’ = O1 U O2

– S’ = S1 x S2

– r’ = r1 x r2

δ’ = { (A1, A2, s1, s2, t1, t2) : (A1, s1, t1) ε δ1 and
(A2, s2, t2) ε δ2 }

λ’ = { (A1, A2, s1, s2, B1, B2) : (A1, s1, B1) ε λ1 and

EE249Fall07
15

(A2, s2, B2) ε λ2 }

• Note:

– A1 ⊆ I1, A2 ⊆ I2, B1 ⊆ O1, B2 ⊆ O2

– 2X U Y = 2X x 2Y

FSM Composition

• Constraint application

λ { (A A B B) λ’ f ll (i i) C B B if dλ = { (A1, A2, s1, s2, B1, B2) ε λ’ : for all (o, i1, … , in) ε C o ε B1 U B2 if and
only if ij ε A1 U A2 for all j }

• The application of the constraint rules out the cases where the
connected input and output have different values (present/absent).

EE249Fall07
16

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 9

I = I1 ∪ I2

O = O1 ∪ O2

FSM Composition

FSM1 FSM2

i1 i2
oS = S1 × S2

Assume that
o1 ∈O1, i3 ∈I2, o1 = i3 (communication)

δ and λ are such that, e.g., for each pair:

δ1({ i1 }, s1) = t1, λ1({ i1 }, s1) = { o1 }

1 2

i3o
1

o
2

EE249Fall07
17

δ2({ i2, i3 }, s2) = t2, λ2({ i2 , i3 }, s2) = { o2 }

we have:

δ({ i1, i2, i3 }, (s1, s2)) = (t1, t2)

λ({ i1, i2, i3 }, (s1, s2)) = { o1, o2 }

i.e. i3 is in input pattern iff o2 is in output pattern

• Problem: what if there is a cycle?

– Moore machine: δ depends on input and state, λ only on state

FSM Composition

composition is always well-defined

– Mealy machine: δ and λ depend on input and state
composition may be undefined
what if λ1({ i1 }, s1) = { o1 } but o2 ∉ λ2({ i3 }, s2) ?

FSM FSM
i1 i3o1 o2

EE249Fall07
18

• Causality analysis in Mealy FSMs (Berry ‘98)

FSM1 FSM2
2

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 10

Moore vs. Mealy

• Theoretically, same computational power (almost)

• In practice, different characteristics

• Moore machines:

– non-reactive
(response delayed by 1 cycle)

– easy to compose
(always well defined)

EE249Fall07
19

(always well-defined)

– good for implementation

– software is always “slow”

– hardware is better when I/O is latched

Moore vs. Mealy

• Mealy machines:

– reactive
(0 response time)

– hard to compose
(problem with combinational cycles)

– problematic for implementation

– software must be “fast enough”

EE249Fall07
20

g
(synchronous hypothesis)

– may be needed in hardware, for speed

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 11

Hierarchical FSM models

• Problem: how to reduce the size of the representation?

• Harel’s classical papers on StateCharts (language) and bounded
concurrency (model): 3 orthogonal exponential reductionsconcurrency (model): 3 orthogonal exponential reductions

• Hierarchy:

– state a “encloses” an FSM

– being in a means FSM in a is active

– states of a are called OR states

– used to model pre-emption and exceptions

a
odd

even
a1 a2

EE249Fall07
21

• Concurrency:

– two or more FSMs are simultaneously active

– states are called AND states

• Non-determinism:

– used to abstract behavior

error

recovery

done

Models Of Computation for reactive
systems

• Main MOCs:

– Communicating Finite State Machines

– Dataflow Process Networks

– Petri Nets

– Discrete Event

– Codesign Finite State Machines

EE249Fall07
22

• Main languages:

– StateCharts

– Esterel

– Dataflow networks

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 12

StateCharts

• An extension of conventional FSMs

• Conventional FSMs are inappropriate for the behavioral description of
complex controlcomplex control

– flat and unstructured

– inherently sequential in nature

• StateCharts supports repeated decomposition of states into sub-states in an
AND/OR fashion, combined with a synchronous (instantaneous broadcast)
communication mechanism

EE249Fall07
23

State Decomposition

• OR-States have sub-states that are related to each other by
l iexclusive-or

• AND-States have orthogonal state components (synchronous
FSM composition)

– AND-decomposition can be carried out on any level of states (more
convenient than allowing only one level of communicating FSMs)

• Basic States have no sub-states (bottom of hierarchy)

EE249Fall07
24

(y)

• Root State : no parent states (top of hierarchy)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 13

StateChart OR-decomposition

To be in state U the system must
be either in state S or in state T

S

V

S

V

f

f

e

e

g g

U

EE249Fall07
25

T Tf
h

h

StateChart AND-decomposition

V,W

V.Y
VZ

U

S T

k
To be in state U the system
must be both in states S and T

V,Z

V

W

X

X,Y
X.Z

Z

Y

S T
k

e

e

e

EE249Fall07
26

X,W

R

Q

RQ

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 14

StateCharts Syntax

• The general syntax of an expression labeling a transition in a StateChart is
e[c]/a ,where

– e is the event that triggers the transitione is the event that triggers the transition

– c is the condition that guards the transition
(cannot be taken unless c is true when e occurs)

– a is the action that is carried out if and when the transition is taken

• For each transition label:

– event condition and action are optional

t b th h i f l

EE249Fall07
27

– an event can be the changing of a value

– standard comparisons are allowed as conditions and assignment statements as
actions

StateCharts Actions and Events

• An action a on the edge leaving a state may also appear as an event
triggering a transition going into an orthogonal state:

– a state transition broadcasts an event visible immediately to all othera state transition broadcasts an event visible immediately to all other
FSMs, that can make transitions immediately and so on

– executing the first transition will immediately cause the second transition
to be taken simultaneously

• Actions and events may be associated to the execution of orthogonal
components : start(A) , stopped(B)

EE249Fall07
28

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 15

Graphical Hierarchical FSM Languages

• Multitude of commercial and non-commercial variants:

– StateCharts, UML, StateFlow, …

• Easy to use for control-dominated systems

• Simulation (animated), SW and HW synthesis

• Original StateCharts have problems with causality loops and
instantaneous events:

EE249Fall07
29

– circular dependencies can lead to paradoxes

– behavior is implementation-dependent

– not a truly synchronous language

• Hierarchical states necessary for complex reactive system
specification

Synchronous vs. Asynchronous FSMs

• Synchronous (Esterel, StateCharts):

– communication by shared variables that are read and written in zero
time

– communication and computation happens instantaneously at
discrete time instants

– all FSMs make a transition simultaneously (lock-step)

– may be difficult to implement

EE249Fall07
30

y p

– multi-rate specifications

– distributed/heterogeneous architectures

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 16

Synchronous vs. Asynchronous FSMs

• A-synchronous FSMs:

– free to proceed independently

– do not execute a transition at the same time (except for CSP
rendezvous)

– may need to share notion of time: synchronization

– easy to implement

EE249Fall07
31

Synchronization

Base station - Base station

Base station - Mobile stations

EE249Fall07
32

Base station - Mobile station

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 17

Handover

• A Mobile Station moving across the cell boundary needs to maintain active

EE249Fall07
33

connections without interruptions or degradations

• Handover

– tight inter-base-station synchronization (in GSM achieved using GPS)

– asynchronous base station operation (UMTS)

Frame Synchronization

• Medium Access Control Layer: TDMA

– each active connection is assigned a number of time slots (channel)

EE249Fall07
34

each active connection is assigned a number of time slots (channel)

• A common notion of time is needed

– each Base Station sends a frame synchronization pilot (FS) at the beginning of
every frame to ensure that all Mobile Stations have the same slot counts

FS 0 1 2 3 4 5 6 7 8 FS 0 1 2 3 4 5 6 7 8 ...

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 18

Bit Synchronization

• Transmitter interleaves the payload data with a pilot sequence known
by the receiver

EE249Fall07
35

• Receiver extracts the clock from the pilot sequence and uses it to
sample the payload data.

PS PD PS PD ...

RX

Asynchronous communication

• Blocking vs. non-Blocking
A B

– Blocking read

– process can not test for emptiness of input

– must wait for input to arrive before proceed

– Blocking write

– process must wait for successful write before continue

bl ki it /bl ki d (CSP CCS)

A B

EE249Fall07
36

– blocking write/blocking read (CSP, CCS)

– non-blocking write/blocking read (FIFO, CFSMs, SDL)

– non-blocking write/non-blocking read (shared variables)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 19

Asynchronous communication

• Buffers used to adapt when sender and receiver have different
raterate
– what size?

• Lossless vs. lossy
– events/tokens may be lost

– bounded memory: overflow or overwriting

– need to block the sender

A B

EE249Fall07
37

• Single vs. multiple read
– result of each write can be read at most once or several times

Communication Mechanisms

• Rendez-Vous (CSP)

– No space is allocated for the data, processes need to synchronize in
some specific points to exchange data

– Read and write occur simultaneously

• FIFO

– Bounded (ECFSMs, CFSMs)

EE249Fall07
38

– Unbounded (SDL, ACFSMs, Kahn Process Networks, Petri Nets)

• Shared memory

– Multiple non-destructive reads are possible

– Writes delete previously stored data

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 20

Communication models

Transmitters Receivers
Buffer
Si e

Blocking
Reads

Blocking
Writes

Single
Reads

Unsynchronized

Read-Modify-write

Unbounded FIFO

Bounded FIFO

Transmitters

many

many

one

one

Receivers

many

many

one

one

Size

one

one

unbounded

bounded

Reads

no

yes

yes

no

Writes

no

yes

no

maybe

Reads

no

no

yes

yes

EE249Fall07
39

Single Rendezvous

Multiple Rendezvous

one

many

one

many

one

one

yes

no

yes

no

yes

yes

Outline

Part 3: Models of Computation• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

Petri Nets

EE249Fall07
40

– Petri Nets

– The Tagged Signal Model

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 21

Discrete Event

• Explicit notion of time (global order…)

• Events can happen at any time asynchronously

• As soon as an input appears at a block, it may be executed

• The execution may take non zero time, the output is marked with
a time that is the sum of the arrival time plus the execution time

• Time determines the order with which events are processed

• DE simulator maintains a global event queue (Verilog and
VHDL)

EE249Fall07
41

VHDL)

• Drawbacks

– global event queue => tight coordination between parts

– Simultaneous events => non-deterministic behavior

– Some simulators use delta delay to prevent non-determinacy

Simultaneous Events in DE

AA BB CC
tt

tt

Fire B or C?
AA BB CC

AA BB CC

tt

AA BB CC

tt

tt

B has 0 delay B has delta delay

t+t+

EE249Fall07
42

AA BB CC AA BB CC
Fire C once? or twice? Fire C twice.

Still have problem with 0-delay
(causality) loop

Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 22

Outline

Part 3: Models of Computation• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

Petri Nets

EE249Fall07
43

– Petri Nets

– The Tagged Signal Model

Co-Design Finite State Machines:
Combining FSM and Discrete Event

• Synchrony and asynchrony

• CFSM definitions

– Signals & networks

– Timing behavior

– Functional behavior

• CFSM & process networks

EE249Fall07
44

• Example of CFSM behaviors

– Equivalent classes

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 23

Codesign Finite State Machine

• Underlying MOC of Polis and VCC

• Combine aspects from several other MOCs

• Preserve formality and efficiency in implementation

• Mix

– synchronicity

– zero and infinite time

EE249Fall07
45

– asynchronicity

– non-zero, finite, and bounded time

• Embedded systems often contain both aspects

Synchrony: Basic Operation

• Synchrony is often implemented with clocks

• At clock ticks

– Module reads inputs, computes, and produce output

– All synchronous events happen simultaneously

– Zero-delay computations

• Between clock ticks

EE249Fall07
46

– Infinite amount of time passed

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 24

Synchrony: Basic Operation (2)

• Practical implementation of synchrony

– Impossible to get zero or infinite delay

– Require: computation time <<< clock period

– Computation time = 0, w.r.t. reaction time of environment

• Feature of synchrony

– Functional behavior independent of timing

EE249Fall07
47

– Simplify verification

– Cyclic dependencies may cause problem

– Among (simultaneous) synchronous events

Synchrony:
Triggering and Ordering

• All modules are triggered at each clock tick

• Simultaneous signals

– No a priori ordering

– Ordering may be imposed by dependencies

– Implemented with delta steps

EE249Fall07
48

computation

continuous time

ticks

delta steps

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 25

Synchrony:
System Solution

• System solution

– Output reaction to a set of inputs

• Well-designed system:

– Is completely specified and functional

– Has an unique solution at each clock tick

– Is equivalent to a single FSM

EE249Fall07
49

– Allows efficient analysis and verification

• Well-designed-ness

– May need to be checked for each design (Esterel)

– Cyclic dependency among simultaneous events

Synchrony:
Implementation Cost

• Must verify synchronous assumption on final design

– May be expensive

• Examples:

– Hardware

– Clock cycle > maximum computation time

– Inefficient for average case

EE249Fall07
50

– Software

– Process must finish computation before

– New input arrival

– Another process needs to start computation

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 26

Pure Asynchrony:
Basic Operation

• Events are never simultaneous

– No two events have the same tag

• Computation starts at a change of the input

• Delays are arbitrary, but bounded

EE249Fall07
51

Asynchrony:
Triggering and Ordering

• Each module is triggered to run at a change of input

• No a priori ordering among triggered modules

– May be imposed by scheduling at implementation

EE249Fall07
52

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 27

Asynchrony:
System Solution

• Solution strongly dependent on input timing

• At implementation

– Events may “appear” simultaneous

– Difficult/expensive to maintain total ordering

– Ordering at implementation decides behavior

– Becomes DE, with the same pitfalls

EE249Fall07
53

Asynchrony:
Implementation Cost

• Achieve low computation time (average)

– Different parts of the system compute at different rates

• Analysis is difficult

– Behavior depends on timing

– Maybe be easier for designs that are insensitive to

– Internal delay

EE249Fall07
54

– External timing

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 28

Asynchrony vs. Synchrony in System Design

• They are different at least at

– Event buffering

– Timing of event read/write

• Asynchrony

– Explicit buffering of events for each module

– Vary and unknown at start-time

EE249Fall07
55

• Synchrony

– One global copy of event

– Same start time for all modules

Combining
Synchrony and Asynchrony

• Wants to combine

– Flexibility of asynchrony

– Verifiability of synchrony

• Asynchrony

– Globally, a timing independent style of thinking

• Synchrony

EE249Fall07
56

– Local portion of design are often tightly synchronized

• Globally asynchronous, locally synchronous

– CFSM networks

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 29

CFSM Overview

• CFSM is FSM extended with

– Support for data handling

– Asynchronous communication

• CFSM has

– FSM part

– Inputs, outputs, states, transition and output relation

EE249Fall07
57

– Data computation part

– External, instantaneous functions

CFSM Overview (2)

• CFSM has:

– Locally synchronous behavior

– CFSM executes based on snap-shot input assignment

– Synchronous from its own perspective

– Globally asynchronous behavior

– CFSM executes in non-zero, finite amount of time

A h f t ti

EE249Fall07
58

– Asynchronous from system perspective

• GALS model

– Globally: Scheduling mechanism

– Locally: CFSMs

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 30

Network of CFSMs: Depth-1 Buffers

• Globally Asynchronous, Locally Synchronous (GALS) model

CFSM2

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

C=>ACFSM1 CFSM2

F

G

C
C

C=>G

EE249Fall07
CFSM3

(A==0)=>B
C=>B

B
A C=>B

Introducing a CFSM

• A Finite State Machine

• Input events, output events and state events

• Initial values (for state events)

• A transition function

Transitions may involve complex, memory-less, instantaneous
arithmetic and/or Boolean functions

EE249Fall07
60

All the state of the system is under form of events

• Need rules that define the CFSM behavior

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 31

CFSM Rules: phases

• Four-phase cycle:

Idle

Detect input events

Execute one transition

Emit output events

• Discrete time

EE249Fall07
61

– Sufficiently accurate for synchronous systems

– Feasible formal verification

• Model semantics: Timed Traces i.e. sequences of events
labeled by time of occurrence

CFSM Rules: phases

• Implicit unbounded delay between phases

• Non-zero reaction time

(avoid inconsistencies when interconnected)

• Causal model based on partial order

(global asynchronicity)

potential verification speed up

EE249Fall07
62

– potential verification speed-up

• Phases may not overlap

• Transitions always clear input buffers

(local synchronicity)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 32

Communication Primitives

• Signals

– Carry information in the form of events and/or values

– Event signals: present/absence

– Data signals: arbitrary values

– Event, data may be paired

– Communicate between two CFSMs

1 input buffer / signal / receiver

EE249Fall07
63

– 1 input buffer / signal / receiver

– Emitted by a sender CFSM

– Consumed by a receiver CFSM by setting buffer to 0

– “Present” if emitted but not consumed

Communication Primitives (2)

• Input assignment

– A set of values for the input signals of a CFSM

• Captured input assignment

– A set of input values read by a CFSM at a particular time

• Input stimulus

– Input assignment with at least one event present

EE249Fall07
64

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 33

Signals and CFSM

• CFSM

– Initiates communication through events

– Reacts only to input stimulus

– except initial reaction

– Writes data first, then emits associated event

– Reads event first, then reads associated data

EE249Fall07
65

CFSM networks

• Net

– A set of connections on the same signal

– Associated with single sender and multiple receivers

– An input buffer for each receiver on a net

– Multi-cast communication

• Network of CFSMs

EE249Fall07
66

– A set of CFSMs, nets, and a scheduling mechanism

– Can be implemented as

– A set of CFSMs in SW (program/compiler/OS/uC)

– A set of CFSMs in HW (HDL/gate/clocking)

– Interface (polling/interrupt/memory-mapped)

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 34

Scheduling Mechanism

• At the specification level

– Should be as abstract as possible to allow optimization

– Not fixed in any way by CFSM MOC

• May be implemented as

– RTOS for single processor

EE249Fall07
67

– Concurrent execution for HW

– Set of RTOSs for multi-processor

– Set of scheduling FSMs for HW

Timing Behavior

• Scheduling Mechanism

– Globally controls the interaction of CFSMs

– Continually deciding which CFSMs can be executed

• CFSM can be

– Idle

– Waiting for input events

EE249Fall07
68

– Waiting to be executed by scheduler

– Executing

– Generate a single reaction

– Reads its inputs, computes, writes outputs

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 35

Timing Behavior: Mathematical Model

• Transition Point

– Point in time a CFSM starts executing

• For each execution

– Input signals are read and cleared

– Partial order between input and output

– Event is read before data

EE249Fall07
69

– Data is written before event emission

Timing Behavior: Transition Point

• A transition point ti

– Input may be read between ti and ti+1

– Event that is read may have occurred between ti-1 and ti+1

– Data that is read may have occurred between t0 and ti+1

– Outputs are written between ti and ti+1

EE249Fall07
70

• CFSM allow loose synchronization of event & data

– Less restrictive implementation

– May lead to non intuitive behavior

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 36

Event/Data Separation

Sender S

Write v1 Emit Write v2 Emit

Sender S

Receiver R

t1ti-1 t2 ti t3 t4 ti+1

Read Event Read Value

EE249Fall07
71

t1ti 1 t2 ti t3 t4 ti+1

• Value v1 is lost even though

– It is sent with an event

– Event may not be lost

• Need atomicity

Atomicity

• Group of actions considered as a single entity

• May be costly to implement

• Only atomicity requirement of CFSM

– Input events are read atomically

– Can be enforced in SW (bit vector) HW (buffer)

– CFSM is guaranteed to see a snapshot of input events

EE249Fall07
72

• Non-atomicity of event and data

– May lead to undesirable behavior

– Atomicized as an implementation trade-off decision

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 37

Non Atomic Data Value Reading

Sender S

X:=4
Y:=4 X:=5 Y:=5

R i R1 t (X 4 Y 5) R2 t (X 5 Y 4)

Sender S

Receiver R1

t1 t2 t3 t4 t5 t6

Receiver R2

Read X

Read X Read Y

Read Y

EE249Fall07
73

• Receiver R1 gets (X=4, Y=5), R2 gets (X=5 Y=4)

• X=4 Y=5 never occurs

• Can be remedied if values are sent with events

– still suffers from separation of data and event

t1 t2 t3 t4 t5 t6

Atomicity of Event Reading

Sender S

Emit X Emit Y

R d

• R1 sees no events R2 sees X R3 sees X Y

Receiver R1

t1 t2 t3 t4 t5

Receiver R2

Receiver R3

Read

Read

Read

EE249Fall07
74

• R1 sees no events, R2 sees X, R3 sees X, Y

• Each sees a snapshot of events in time

• Different captured input assignment

– Because of scheduling and delay

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 38

Functional Behavior

• Transition and output relations

– input, present_state, next_state, output

• At each execution, a CFSM

– Reads a captured input assignment

– If there is a match in transition relation

– consume inputs, transition to next_state, write outputs

EE249Fall07
75

– Otherwise

– consume no inputs, no transition, no outputs

Functional Behavior (2)

• Empty Transition

– No matching transition is found

• Trivial Transition

– A transition that has no output and no state changes

– Effectively throw away inputs

EE249Fall07
76

• Initial transition

– Transition to the init (reset) state

– No input event needed for this transition

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 39

CFSM and Process Networks

• CFSM

– An asynchronous extended FSM model

– Communication via bounded non-blocking buffers

– Versus CSP and CCS (rendezvous)

– Versus SDL (unbounded queue & variable topology)

– Not continuous in Kahn’s sense

EE249Fall07
77

– Different event ordering may change behavior

– Versus dataflow (ordering insensitive)

CFSM Networks

• Defined based on a global notion of time

– Total order of events

– Synchronous with relaxed timing

– Global consistent state of signals is required

– Input and output are in partial order

EE249Fall07
78

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 40

Buffer Overwrite

• CFSM Network has

– Finite Buffering

– Non-blocking write

– Events can be overwritten

– if the sender is “faster” than receiver

• To ensure no overwrite

EE249Fall07
79

• To ensure no overwrite

– Explicit handshaking mechanism

– Scheduling

Example of CFSM Behaviors

A
i

i1

err o

• A and B produce i1 and i2 at every i

• C produce err or o at every i1,i2

B

C

i2

EE249Fall07
80

• Delay (i to o) for normal operation is nr, err operation 2nr

• Minimum input interval is ni

• Intuitive “correct” behavior

– No events are lost

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 41

Equivalent Classes of CFSM Behavior

• Assume parallel execution (HW, 1 CFSM/processor)

• Equivalent classes of behaviors are:

– Zero Delay

– nr= 0

– Input buffer overwrite

– ni<nr

EE249Fall07
81

– Time critical operation

– ni/2<nr≤ni

– Normal operation

– nr<ni/2

Equivalent Classes of CFSM Behavior (2)

• Zero delay: nr= 0

– If C emits an error on some input

– A, B can react instantaneously & output differently

– May be logically inconsistent

• Input buffers overwrite: ni<nr

EE249Fall07
82

– Execution delay of A, B is larger than arrival interval

– always loss of event

– requirements not satisfied

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 42

Equivalent Classes of CFSM Behavior (3)

• Time critical operation: ni/2<nr≤ni

– Normal operation results in no loss of event

– Error operation may cause lost input

• Normal operation: nr<ni/2

– No events are lost

– May be expensive to implement

EE249Fall07
83

• If error is infrequent

– Designer may accept also time critical operation

– Can result in lower-cost implementation

Equivalent Classes of CFSM Behavior (4)

• Implementation on a single processor

– Loss of Event may be caused by

– Timing constraints

– ni<3nr

– Incorrect scheduling

– If empty transition also takes nr

ACBC round robin will miss event

EE249Fall07
84

– ACBC round robin will miss event
– ABC round robin will not

The MARCO/DARPA Gigascale Silicon
Research Center for Design & Test

June Workshop
June 17th-18th, 2001

Page 43

Some Possibility of Equivalent Classes

• Given 2 arbitrary implementations, 1 input stream:

– Dataflow equivalence

– Output streams are the same ordering

– Petri net equivalence

– Output streams satisfy some partial order

– Golden model equivalence

EE249Fall07
85

– Output streams have the same ordering

– Except reordering of concurrent events

– One of the implementations is a reference specification

– Filtered equivalence

– Output streams are the same after filtered by observer

Conclusion

• CFSM

– Extension: ACFSM: Initially unbounded FIFO buffers

– Bounds on buffers are imposed by refinement to yield ECFSM

– Delay is also refined by implementation

– Local synchrony

– Relatively large atomic synchronous entities

EE249Fall07
86

– Global asynchrony

– Break synchrony, no compositional problem

– Allow efficient mapping to heterogeneous architectures

