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Outline

• Automotive architecture trends and challenges

• Platform-based system-level design and 
timing evaluation metrics

• Issues with model-based design 

• From analysis to synthesis
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• From analysis to synthesis

• Activation models and end-to-end latencies

• Problem definition
– Example

• MILP Optimization

• Case Study 



Active and Passive Safety
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by Leen and Effernan – IEEE Computer



AS - ACC (from Continental web site)

• Adaptive Cruise Control (ACC) – Chassis Electronics 
Combined with Safety Aspects

As with conventional cruise control, the driver 
specifies the desired velocity - ACC 
consistently maintains this desired speed. 

In addition, the driver can enter the desired 
distance to a vehicle driving in front.
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distance to a vehicle driving in front.
If the vehicle now approaches a car travelling 
more slowly in the same lane, ACC will 
recognize the diminishing distance and 
reduce the speed through intervention in the 
motor management and by braking with a 
maximum of 0.2 to 0.3 g until the preselected 
distance is reached. If the lane is clear again, 
ACC will accelerate to the previously selected 
desired tempo. 



AS-LDW (from Continental web site)
• Lane Departure Warning System (LDW)

5

LDW wil warn the driver if he or she is on the verge of inadvertently drifting out of 
the lane. Using a CMOS Camera and an image processing algorithm, this driver 
assistance system registers the course of the lane in relation to the vehicle. The 
system "sees", as it were, the course of the road and where the car is going. If the 
warning algorithm detects an imminent leaving of the current driving lane, the 
system warns the driver with haptic, kinestatic, or acoustical feedback. Possible 
warning alerts can be a trembling in the steering wheel, a vibrating seat or a virtual 
washboard sound. Series production is planned for 2005.
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Automotive architecture trends

• Horizontally-integrated functions are becoming key 
differentiators and are gaining increasing authority 

• An increasing number of functions will be distributed on a 
decreasing number of ECUs and enabled through an 
increasing number of smart sensors and actuators
• today: > 5 buses and > 30 ECUs

• 90% of innovation in cars for the foreseeable future will be 
enabled through the Electronic Vehicle Architecture 
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enabled through the Electronic Vehicle Architecture 

• Transition from single-ECU Black-box based development 
processes to a system-level engineering process 
• System-level methodologies for quantitative exploration and 
selection, 

• From Hardware Emulation to Model Based Verification of the 
System

• Architectures need to be defined years ahead of production 
time, with incomplete information about (future) features

• Multiple non-functional requirements can be defined



Outline

• Automotive architecture trends and challenges
• Platform-based system-level design and 
timing evaluation metrics
– worst-case analysis
– stochastic analysis

• Issues with model-based design 
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• Issues with model-based design 
• From analysis to synthesis
• Activation models and end-to-end latencies
• Problem definition

– Example

• MILP Optimization
• Case Study  
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Functional Model: An example
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Architecture Model: An example
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Deployment: An example
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Periodic Activation Model
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Data Driven Activation Model
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Functions Reqmt Alt 5 Alt 5exp Alt 6 Alt 7 (event)

Functions Reqmt Alt 1 Alt 2 Alt 4 Alt 4exp
function5 180 433.92 178.92 159.08 116.58 312.32 119.82 312.32 119.82
function4 100 395.21 155.21 109.35 89.35 180.93 70.93 180.93 70.93
function3 300 678.72 196.22 711.25 191.25 711.60 191.60 724.18 204.18
function2 300 520.99 170.99 479.06 129.06 479.19 129.19 489.19 139.19
function1 300 695.38 232.88 715.75 195.75 716.10 196.10 728.68 208.68

Synthesis 
opportunity

Case study 1

20

Functions Reqmt Alt 5 Alt 5exp Alt 6 Alt 7 (event)
function5 180 310.58 118.08 310.58 118.08 230.06 72.56 130.1 60.06
function4 100 180.97 70.97 180.97 70.97 180.97 70.97 80.97 58.47
function3 300 532.74 162.74 532.74 162.74 532.74 162.74 333.9 123.9
function2 300 489.57 139.57 489.57 139.57 489.57 139.57 303.8 113.8
function1 300 537.24 167.24 537.24 167.24 537.24 167.24 318.9 128.9

• By transmitting messages “on event”, the worst case 
latency can be reduced in most cases

• By properly allocating functions to ECUs the end-2-
end latency can be improved



Stochastic and simulation-based analysis

• Simulation

– Built C++ simulator for can message 
analysis (at bit level – only arbitration)

– Currently being expanded to end-to-end 
computations, periodic sampling model for 
latency analysis 
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latency analysis 

• Stochastic analysis

– Approximate analysis of pmf of message 
latencies in CAN bus (complete - target ?)

– Future work

• End-to-end analysis of sampling model 

• Regression-based analysis to define pmf from 
general information (such as load or loads at 
harmonic rates)



Stochastic and simulation-based analysis

22
62 msg set (subset of chassis bus). Low priority ms g – Distributions of latencies



Outline

• Automotive architecture trends and challenges
• Platform-based system-level design and 
timing evaluation metrics
– worst-case analysis
– stochastic analysis

• Issues with model-based design
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• Issues with model-based design
• From analysis to synthesis
• Activation models and end-to-end latencies
• Problem definition

– Example

• MILP Optimization
• Case Study  



Issues with model-based development

• Model-based design methodologies 

– improve the quality and the reusability of 
software.

– The possibility of defining components 
(subsystems) at higher levels of abstraction and 
with well defined interfaces allows separation of 
concerns and improves modularity and 
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concerns and improves modularity and 
reusability. 

– The availability of verification tools (often by 
simulation) gives the possibility of a design-time 
verification of the system properties.

• However, most modern tools for model-
based design have a number of 
shortcomings



Issues with model-based development

• Lack of separation between the functional 
model and the architecture model

• Lack of support for the definition of the 
task and resource model

• Insufficient support for the specification of 
timing constraints and attributes
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timing constraints and attributes

• Lack of modeling support for the analysis 
and the back-annotation of scheduling-
related delays 

• Issue of semantics preservation



Outline

• Automotive architecture trends and challenges
• Platform-based system-level design and timing 
evaluation metrics
– worst-case analysis
– stochastic analysis

• Issues with model-based design 
• Time predictability and timing isolation
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• Time predictability and timing isolation
• From analysis to synthesis 
• Activation models and end-to-end latencies
• Problem definition

– Example

• MILP Optimization
• Case Study 



Opportunities for synthesis

Periods
Activation modes
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Flow To Implementation

Mapping

Performance
Analysis

Refinement

message 
priorities

allocation
Function to task 
mapping

DATE 07 (MILP)
RTAS 07 (B&B)

Current 
(formulation 
found for 1 bus 
case – MILP)



Periodic Activation Model
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Event-based Activation Model
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Activation modes: latency tradeoffs

End to end latency requirements
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End to end latency requirements
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Model Definition 

• Selection of the activation event and link groups
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)(lg1repor =
Group Representative
Link Group
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2l

3l

6l

An object can be activated by:
• Periodic Timer
• Signal from a single predecessor

T27=100

CAN2

CAN4

7l

8l
ro

9l
• AND composition of signals from 
a link group



Latencies of OSEK Tasks and CAN Messages
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Linear Approximation

1τ 2m 3τ 4m 5τ14o 15o

8τ 7m 6τ17o 16o

18o 19o9τ 10m 11τ 12m 13τ

1514 ,ooL
1716 ,ooL

1918 ,ooL

36.44 86.130 03.507upperLinear _

int_ poFixed

lowerLinear _

40 88 312

91.38 43.79 96.294

A linear combination of linear upper and lower boun ds can be 
sufficiently accurate to be used as an estimator of  actual e2e latency
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MILP Solution

Set of resources (CAN, ECUs) :

Set of links connecting schedulable objects :

communication functions

Set of objects implementing the computation and:
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Sets
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Feasibility Constraints 1
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Feasibility Constraints 2
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Possible Objective Function
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Outline

• Automotive architecture trends and 
challenges

• System-level design methodology and 
timing evaluation
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timing evaluation

• Activation models and end-to-end 
latencies

• Problem definition

– Example

• MILP Optimization

• Case Study



Experimental vehicle case study

Functional 
Architecture

Mapping

• 100 Tasks
• 322 Messages
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Physical 
Architecture

Using Schedulability
theory to set schedulable
object activation model

..

.
ECU1 ECU2

..

.
ECU20 ECU21

...

..

.
ECU61 ECU62

• 6 BUSes
• 38 ECUs 



Case study results
Problem characterization

• 38 ECUs, 6 Buses
• Bus speed between 25 

and 500 kb/s
• Bus utilization between 

30% to 50% 
• CPU utilization between  

5% to 60%
• 100 tasks, 322 messages

Before Optimization
(all periodic)
• Worst case = 577ms 

was  found for paths 
with deadline 300ms 

• Worst case = 255.5ms 
found for paths with 
deadline 200ms 

• Worst case = 145.4ms 

Optimization results

• A feasible solution is found 
if using the largest 
lateness path metric

after changing 24 groups
• 294.8 for paths with d=300 
• 158.1 for paths with d=200
• 95.46 for paths with d=100
(61.57 average slack)
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• 100 tasks, 322 messages
• Number of links in the  

functional dataflow is 507
• 184 Paths analyzed 

between 10 pairs of 
functional nodes

• Worst case = 145.4ms 
found for paths with 
deadline 100ms 

(61.57 average slack)
• the solution was improved 

with 5 extra branches
(76.79 average slack)
αααα practically constant =0.465
with weighted sum of path
latencies (evaluating all 
nodes) no solution found

Time to solve is 
• 2.6 s for the exact analysis
• 7 s for the linear approx
(on a 1.4GHz PC)



Approach

• Mathematical programming

– Modifying an object period affects multiple paths

– Additional constraints due to legacy tasks and messages

• Geometric Programming: Poly-time optimization

– Standard Form:
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– x = (x1, x2, …, xn) are positive real-valued variables

– g is a set of monomial functions

– f is a set of posynomial functions

• Sum of monomials



Geometric programming formulation

• Approximate the response time ri with si
– 0 ≤ αi ≤ 1

– If all αi = 1, si ≥ ri

Minimize the sum of
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Minimize the sum of
approx. response times

Meet end-to-end
latency deadlines

Transformed equations
for approx. response times

Ensure schedulability

Meet utilization bounds

Lower and upper bounds for periods



Iterative Procedure to Reduce Error

• Iteratively change αi
based on error

• Parameters

– maxIt – max. # of 
iterations 

– errLim – max. 

Start

all αi = 1;
ItCount = 0;

ItCount++;
(s, t) = GP(α);
Calculate r;
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– errLim – max. 
permissible error

Calculate r;
ei = (si – ri)/ri;

Max(|ei|) < errLim
OR

ItCount > maxIt

End

Yes

αi = h(αi, ei)
No



Case Study: Advanced Safety Vehicle

• From GM Research

• E.g. enhanced 
cruise control, 
lane departure 
warning, parallel 
parking assist .

.

-

.

.

.

.
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• Architecture

– 38 ECUs

– 4 buses

• Functionality

– 92 tasks

– 196 messages

.

.

� End-to-end latency constraints

� Over 12 source-sink task pairs

� 222 total paths

� Deadlines range from 100ms to 
300ms



Experiments

• GP optimization meets 
all deadlines in 1st

iteration

• Solution time: 24s
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� Maximum error reduced 
from 58% to 0.56% in 15 
iterations

� Average error (not shown) 
reduced from 6.98% to 
0.009%



Concluding remarks

– Quantitative analysis offers opportunities for 
architecture exploration and selection

– Domains of cost, dependability and time have 
been identified as prime candidates

• not considering, for example, power  

– Analysis techniques are at different levels of 
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– Analysis techniques are at different levels of 
maturity

– Uncertainty challenge

• Some required information is typically not available 
in the early development stages

• Requirements extraction process is not mature

– Synthesis to be extended to other domains

• leveraging MILP or GP formulations of the placement, 
priority assignment and period definition problems 



Concluding remarks

– Worst case timing analysis can be applied to 
design optimization problems

– With respect to end-to-end latencies in 
distributed architectures there are multiple 
dimensions that can be explored

• task allocation
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• task allocation

• period assignment

• priority assignment

• ...

– Also, most active safety functions are not truly 
hard real-time and worst case analysis may be 
pessimistic

• end-to-end stochastic analysis

• design optimizations based on stochastic analysis ?



Q&A

Thank you!
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