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Active and Passive Safety
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AS - ACC (from Continental web site)

e Adaptive Cruise Control (ACC) - Chassis Electronics
Combined with Safety Aspects

As with conventional cruise control, the driver
specifies the desired velocity - ACC
consistently maintains this desired speed.

In addition, the driver can enter the desired
distance to a vehicle driving in front.

If the vehicle now approaches a car travelling
more slowly in the same lane, ACC will
recognize the diminishing distance and
reduce the speed through intervention in the
motor management and by braking with a
maximum of 0.2 to 0.3 g until the preselected
distance is reached. If the lane is clear again,
ACC will accelerate to the previously selected
desired tempo.




AS-LDW (from Continental web site)
e Lane Departure Warning System (LDW)

LDW wil warn the driver if he or she is on the verge of inadvertently drifting out of
the lane. Using a CMOS Camera and an image processing algorithm, this driver
assistance system registers the course of the lane in relation to the vehicle. The
system "sees", as it were, the course of the road and where the car is going. If the
warning algorithm detects an imminent leaving of the current driving lane, the
system warns the driver with haptic, kinestatic, or acoustical feedback. Possible
warning alerts can be a trembling in the steering wheel, a vibrating seat or a virtual
washboard sound. Series production is planned for 2005. 5



Evolution of Integrated Functions
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Automotive architecture trends

Horizontally-integrated functions are becoming key
differentiators and are gaining increasing authority
An increasing number of functions will be distributed on a
decreasing number of ECUs and enabled through an
increasing number of smart sensors and actuators
e today: > 5 buses and > 30 ECUs
90% of innovation in cars for the foreseeable future will be
enabled through the Electronic Vehicle Architecture
Transition from single-ECU Black-box based development
processes to a system-level engineering process
e System-level methodologies for quantitative exploration and
selection,
e From Hardware Emulation to Model Based Verification of the
System
Architectures need to be defined years ahead of production

time, with incomplete information about (future) featL%res

Multiple non-functional requirements can be defined
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Deployment Design Process

Primary Secondary What is captured Metrics
Performance/ | End-to-end measuring the time distance between two | miliseconds
Time latency events (related to stability and performance)
Jitter maximum delay of a periodic signal with miliseconds, or % of period,
respect to ideal reference
input coherency | time distance between two eventsfsamples | miliseconds
from mutiple sensors observing the same
object/phenomenon
] Reliability expectation on failure, related to warranty | expected time between failures
costimpact MTTF or fault rate (number of
faults per hour)
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Deployment model
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Tool integration platform
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Design Process and Requirement
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Functional Model: An example
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Architecture Model: An example
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End-to-end
latencies

ECU and bus
utilizations

Deployment: An example
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Periodic Activation Model
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Data Driven Activation Model
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Case study 1

Functions
function5
function4
function3
function2
functionl

Functions
function5
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By transmitting messages “on event”, the worst case

Regmt
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300]695.38
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0.93 70.93
4.18 204.18
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opportun
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latency can be reduced in most cases

By properly allocating functions to ECUs the end-2-
end latency can be improved
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Stochastic and simulation-based analysis

e Simulation

— Built C++ simulator for can message
analysis (at bit level — only arbitration)

— Currently being expanded to end-to-end
computations, periodic sampling model for
latency analysis

e Stochastic analysis

— Approximate analysis of pmf of message
latencies in CAN bus (complete - target ?)

— Future work
e End-to-end analysis of sampling model

e Regression-based analysis to define pmf from
general information (such as load or loads at
harmonic rates)



Stochastic and simulation-based analysis
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Issues with model-based development

e Model-based design methodologies

— improve the quality and the reusability of
software.

— The possibility of defining components
(subsystems) at higher levels of abstraction and
with well defined interfaces allows separation of
concerns and improves modularity and
reusability.

— The availability of verification tools (often by
simulation) gives the possibility of a design-time
verification of the system properties.

e However, most modern tools for model-
based design have a number of
shortcomings

24



Issues with model-based development

Lack of separation between the functional
model and the architecture model

Lack of support for the definition of the
task and resource model

Insufficient support for the specification of
timing constraints and attributes

Lack of modeling support for the analysis
and the back-annotation of scheduling-
related delays

Issue of semantics preservation

25
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Periodic Activation Model

High latency, but allows {
decoupling the
scheduling problem

End—-to—end
latency
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Event-based Activation Model

End—-to—end Data—driven precedence
Lower latency for high latency constrained activation
priority paths, jitter analysis model

increases along the path
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e[ ot ot oo
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Activation modes: latency tradeoffs
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Model Definition

e Selection of the activation event and link groups

CAN, CAN,

&»Q Link Group
Group Representative
o, =rep(lg,)

>0

An object can be activated by:
 Periodic Timer
« Signal from a single predecessor

« AND composition of signals from
a link group

R 9

$ 000000
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Latencies of OSEK Tasks and CAN Messages

Linear Combination First Instance
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Linear Approximation

- - - - L°14 1015 L016 1017 LOlB 1019
O—OTFOTPOT YOI POT>© Linear _upper 44.36 130.86 507.03
O+ OF—OF—1040 |:> _ .

o " m, m, o Fixed _point 40 88 312
O—*+OT—+OT—OT—+O+—O—>0
|| | Linear _lower 38.91 79.43 294.96

A linear combination of linear upper and lower boun ds can be

sufficiently accurate to be used as an estimator of actual e2e latency
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MILP Solution

Variables

V : Set of objects implementing the computation and
communication functions

E :Set of links connecting schedulable objects

R:Set of resources (CAN, ECUSs)

T, : Priority of object o,
T, : Period of objecto,
C. : Worstcase execution/transmission time of object o,

r. - Worst case response timeof object o

J. :Release Jitterof object o,

w; : Worstcase runnable queueing time of object o
L. :Endtoend latency between object o, and o,

_ |1, If activation of o, isevent-driven by o,
Yok = .
0, otherwise

34




Feasibility Constraints 1

Jitter Inheritance Rule

Ve Sy ~ | . [ Ailinks i one group assume |
Y TV | _the same activation model :

Y Z Y k <1 i ' Only one of the incoming link group i

e 0!}, ! Lo, 0G(0y) : ' can provide its activation signal :
:5;.:—-73—\‘% ll'::::____:::::__________:::::__::::__:::::II :':::::::::::::::::::::::::::::::::::
b@ e ) ! X ! | . . !

© :::‘é'e_:gi i Jk = Zyﬁk M :  If none of incoming groups carry :
@1t ” : LgnHG(0y) i | activation signal, then release jitter

i 0< ‘Jk i i of objectkis 0 i

| J,sr,. + 1-vy k) XM i ' Release jitter inherited from object r i

| ! i which has largest wcrt from the !

A Pl (1- yr,k) XM < J, : ' activating group i
rh+(yhk_1)xM SJk e !

——. 0 Jk < I i Simplified version of link groups i
Jk S yh k x M :""_""'_""'_""'_""'_""'J




Feasibility Constraints 2
WCRT Rule

I -
' Calculation of worst case
, response time

L

w, ='C, ¥ gh (%Jk"'a)ck

1 1
1
. * A linear combination of linear upper i
i and lower bounds is used as an i
' estimation of runnable queuing time
i « alpha is chosen to minimize the i
1 1
| |

R OP mean square fit function
e e e e e e = = = 1 e ,
Latency Rule
w, if link I, ; carriesactivation signal Wj < Zi,j
z,;=qw,+J;+T, otherwis, o; may beactivated by < + _ X
other signal wgh release jitter J, Z'J - Wj (1 yi,j) M

{ /—'»‘

Path end to end latency can not i E ’ 1, 0P, ’ E
exceed deadline i : :




Possible Objective Function

Maximize Z Y. i Minimization of the number of :
| - . event buffers in the system |

Minimization of sum of

P OP . end to end latencies

iMinimize Z Vo X |\/|ax(|_ID - dp ,0) | Minimization of sum of
: PP r " ! iweighted deadline violation
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Experimental vehicle case study
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Case study results

Before Optimization
(all periodic)

e \WWorst case = 57/ms
was found for paths
with deadline 300ms

 Worst case = 255.5ms
found for paths with
deadline 200ms

e \Worst case = 145.4ms
found for paths with
deadline 100ms

Problem characterization

38 ECUs, 6 Buses

* Bus speed between 25
and 500 kb/s

» Bus utilization between
30% to 50%

o CPU utilization between
5% to 60%

e 100 tasks, 322 messages

e Number of links in the
functional dataflow is 507

e 184 Paths analyzed
between 10 pairs of
functional nodes

Optimization results

» Afeasible solution is found
if using the largest
lateness path metric

after changing 24 groups

e 294.8 for paths with d=300

e 158.1 for paths with d=200

e 95.46 for paths with d=100

(61.57 average slack)

* the solution was improved
with 5 extra branches

(76.79 average slack)

a practically constant =0.465

with weighted sum of path

latencies (evaluating all
nodes) no solution found

Time to solve is
» 2.6 s for the exact analysis
7 s for the linear approx

(ona1l.4GHz PC)




Approach

e Mathematical programming
- Modifying an object period affects multiple paths
— Additional constraints due to legacy tasks and messages
e Geometric Programming: Poly-time optimization
- Standard Form:
minimize fo(x)
subjectto  fi(z) <1 i=1,...,m
gi(r)=1 i=1,...,p
- X = (X4, X5, ..., X,) are positive real-valued variables
— g is a set of monomial functions

m(x) = cx{taxs? ...z c>0,a; €R
— fis a set of posynomial functions

. 41
e Sum of monomials

41



Geometric programming formulation

e Approximate the response time r; with s,
- 0 S GifE 1
- IfEﬂ|Gi==]q & 2

S; = c; + Z ( —+ uL) Cj Yo, € T

jEhp(i

Minimize the sumof __, ) D
approx. response times

st £s g ds Vp e P
Meet end-to-end / > ciote; ‘
: d€hp(H) IHTT 4 5 9 <1 VYoeT
latency deadlines 3, jERP() T = O;
Transformed equations ___—— | 2@ U <] Yo, € M
for approx. response times i I
L S; = s, + ¢ Yo, € M
Ensure schedulability — t_ § 1 Voi € O
ZO,. , .~ <u VR; € R
Meet utilization bounds — 110, =J o !
/ n, <t <x; Yo, € O
Lower and upper bounds for periods 42
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lterative Procedure to Reduce Error

: Start
e Iteratively change g [EET
based on error ala = 1
e Parameters liCount = 0;
- maxIt - max. # of :
iterations ItCount++;
: (s, t) = GP(a); |,
- errLim — max. Calculate r;
permissible error e = (s - r)/r;

Max(|e;|) < errLim
OR
ItCount > maxIt

a; = h(a;, &)

43
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e From GM Research

e E.g. enhanced
cruise control,
lane departure
warning, parallel
parking assist

e Architecture
- 38 ECUs
- 4 buses
e Functionality
- 92 tasks
— 196 messages

Case Study: Advanced Safety Vehicle

= e

O-O—H H = A=
O L_I%
oL — _—
O— 1 OE —
— < —
O ‘ O =

* End-to-end latency constraints
= QOver 12 source-sink task pairs
= 222 total paths

= Deadlines range from 100ms to
300ms

44
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Experiments

Latency Before and After Period Synthesis

o Manual )
O Period Synthesis Deadllnes

Source-Sink Pair

Maximum error reduced
from 58% to 0.56% in 15
iterations

Average error (not shown)
reduced from 6.98% to
0.009%

0.1+

e GP optimization meets

all deadlines in 1st
iteration

e Solution time: 24s

Iterative Reduction of Response Time Estimation Error

1 2 3 4 5 6 7 8 9 w0 M 12 13 14 15
Iteratlon #
“40
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Concluding remarks

— Quantitative analysis offers opportunities for
architecture exploration and selection

— Domains of cost, dependability and time have
been identified as prime candidates
e not considering, for example, power

— Analysis techniques are at different levels of
maturity

— Uncertainty challenge

e Some required information is typically not available
in the early development stages

e Requirements extraction process is not mature
— Synthesis to be extended to other domains

e leveraging MILP or GP formulations of the placement,
priority assignment and period definition problems46



Concluding remarks

— Worst case timing analysis can be applied to
design optimization problems

— With respect to end-to-end latencies in
distributed architectures there are multiple
dimensions that can be explored

e task allocation

e period assignment
e priority assignment
e ...

— Also, most active safety functions are not truly
hard real-time and worst case analysis may be
pessimistic

e end-to-end stochastic analysis
e design optimizations based on stochastic analysis 2;



Q&A

Thank youl!
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