
Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Design of Embedded Systems: Models, Validation
and Synthesis (EE 249)—Lecture 4a

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

13 September 2007
Last compiled: 4th October 2007, 18:45 hrs

Statecharts

Fall 2007 EE 249 Slide 1

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Overview

Finite State Machines
Finite Automata
Moore Machines
Mealy Machines

Statecharts

Stateflow

SyncCharts (Safe State Machines)

Fall 2007 EE 249 Slide 2

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Finite Automata

Formally a finite automaton is defined as a five tuple
(Q,Σ, δ, q0,F) where

Q is a finite set of states,
Σ is the input alphabet,
q0 ∈ Q is the begin state (initial state),
F ⊆ Q is the set of final states,
δ : Q × Σ→ Q is the transition function.

The transition function gives for every state q and every input
symbol a the new state δ(q, a) that arises as reaction on the
execution of a in state q.

Thanks to Willem-Paul de Roever and Kai Baukus for providing part of the following

material

Fall 2007 EE 249 Slide 3

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

State Diagram

For each state, the possible reactions to input that arrives in that
state is specified by a transition to other states.

Fall 2007 EE 249 Slide 4

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Extensions

I Restriction of these kind of automata as defined above: they
have an input alphabet but not an output alphabet.

I There are two ways to extend the above model with output:

1. Output can be associated with a state (a so called Moore
machine)

2. or with a transition (a so called Mealy machine).

I A Moore machine is a 6-tuple (Q,Σ,∆, δ, λ, q0) where
Q,Σ, δ, q0 are the same as in the definition of the finite
automaton,

∆ is the output alphabet and
λ : Q → ∆ is the output function.

I A Mealy machine is also a 6-tuple (Q,Σ,∆, δ, λ, q0) but now
λ is a function from Q × Σ to ∆.

Fall 2007 EE 249 Slide 5

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Example: Moore Machine

Ready

cup emitted

enter coin

Idle

enter coin

cup removed

action: initialize

Emitting cup

action: emit cup

Pouring coffee

action: pour coffee

I Moore machine: output λ is associated with every state

I Mealy machine: λ(q, a) gives output associated with the
transition of state q on input a.

Fall 2007 EE 249 Slide 6

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Serial Addition: Moore Machine

(1,0)

(1,1)

(0,0)

0 1

1

0

(1,1)

(0,0)
(0,0)

(1,1)
(0,0)

(1,0)

(0,1)

(1,1)

(1,0) or (0,1)

(0,1) or (1,0)

 (0,1) or

carry: 0
carry: 1

Fall 2007 EE 249 Slide 7

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Serial Addition: Mealy Machine

(0,0)/0
(1,0)/1
(0,1)/1

(1,1)/0

(0,0)/1

(0,1)/0
(1,0)/0
(1,1)/1

carry: 0 carry: 1

Fall 2007 EE 249 Slide 8

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Disadvantages

I They have no structure. There is no strategy for their
top-down or bottom-up development.

I State-transition diagrams are “flat”, i. e., without a natural
notion of depth, hierarchy or modularity,

I State-transition diagrams are uneconomical concerning their
transitions; think for instance of a high-level interrupt

Fall 2007 EE 249 Slide 9

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Interrupt Transition
They are not economical w. r. t. transitions, when one event has all
transitions as a starting point as in case of interrupts:

Interrupt state

Fall 2007 EE 249 Slide 10

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Finite Automata
Moore Machines
Mealy Machines

Disadvantages (cont’d)

I Concerning the states, state-transition diagrams are even very
uneconomical: Exponential blow-up

I They are not economical w. r. t. parallel composition:
Exponential growth in the number of states when composed
in parallel.

I The nature of state-transition diagrams is inherently sequential
and so parallelism can‘t be represented in a natural way.

Fall 2007 EE 249 Slide 11

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Overview

Finite State Machines

Statecharts
Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Stateflow

SyncCharts (Safe State Machines)

Fall 2007 EE 249 Slide 12

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Statecharts

I We need a formalism for the hierarchical development and
refinement of Mealy machines.

I This is provided by Statecharts, invented by David Harel
(1987)

I Statecharts display hierarchy and structure, and enable
hierarchical development

I In the following, will illustrate this with the example of a
television set with remote control

I The Statecharts used in this lecture follow the syntax of the
original Statecharts, as invented by Harel, and as supported by
the STATEMATE toolset

Fall 2007 EE 249 Slide 13

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

First Concept: Hierarchy

I Hierarchy or depth in states, and interrupts.

I This is achieved by drawing states as boxes that contain other
boxes as sub-states.

I The television set can be in two states: ON and STANDBY.
Switching between them is done by pushing the on and off
buttons, generating the on and off events:

Fall 2007 EE 249 Slide 14

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Zooming into ON

In state ON, the tv set can be in two sub-states: NORMAL and
VIDEOTEXT:

The −→ arrow leading to NORMAL specifies which sub-state
should be entered when the higher level state ON is entered,
namely NORMAL; this state is also called the initial state (within
ON)
Note: To be complete, one of the states ON and OFF would also
need to be labeled as initial state (at top-level).

Fall 2007 EE 249 Slide 15

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Superstates

When in ON, and an event off is generated:

1. State ON (incl. all its sub-states) is left—so this acts like an
interrupt

2. Control switches to state STANDBY.

In this way interrupts are handled without cluttering the picture
with arrows

Fall 2007 EE 249 Slide 16

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Second Concept: Orthogonality

I Two independent components can be put together into an
AND-state, separated by a dotted line

I Being in an AND-state means being in all of its immediate
sub-states at the same time.

I This prevents the exponential blow-up familiar from
composing FSMs in parallel.

Fall 2007 EE 249 Slide 17

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Third Concept: Broadcast

In our case we split state NORMAL in two orthogonal components
CHANNEL, for selecting channels, and SM for switching to mute:

Note special time-out event tm(1)

Fall 2007 EE 249 Slide 18

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Actions and Transitions

I Orthogonal components can communicate by generating
events which are broadcast

I This can be done in a time-dependent manner: introducing
the generation of events e/a1; . . . ; an and time-out events
tm(1), . . .

I In general, the label of a transition consists of two parts:

1. Trigger, determininig if and when a transition will be taken
2. Action, performed when a transition is taken.

I This action is the generation of a set of events.

Fall 2007 EE 249 Slide 19

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Fourth concept: Compound events

When in state STANDBY, dependent on whether one presses
button 1 or 2, one makes sure to switch to states CH1 or CH2 in
ON. This is indicated as follows:

off

1 2
on standby

Fall 2007 EE 249 Slide 20

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Transition Labels

I In general, one can label transitions by compound events such
as (¬a ∧ b) ∨ c , a ∧ b, c ∨ d , ¬a, etc.

I To express priority of event b over event a in this statechart:
can replace a by a ∧ ¬b

Fall 2007 EE 249 Slide 21

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Summa Summarum

In a nutshell, one may say with David Harel:
Statecharts = Mealy Machines

+ depth
+ orthogonality
+ broadcast
+ data

Fall 2007 EE 249 Slide 22

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Overview

Finite State Machines

Statecharts
Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Stateflow

SyncCharts (Safe State Machines)

Fall 2007 EE 249 Slide 23

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Characteristics of Real-Time Systems

I The environment can deliver data continuously, for example
via temperature sensor.

I Data can be delivered from different sources simultaneously
and must therefore be processed in parallel.

I The time scale is fast by human standard (milli seconds
instead of seconds),

I The system must react in time and accurately on input from
the environment.

Fall 2007 EE 249 Slide 24

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Time

I The elementary unit of observation in a reactive system is the
event

I The environment sends events to the system to trigger
computations, the system reacts to the environment by
sending, or generating, events.

I Events are also means of communication between parts of a
system.

Fall 2007 EE 249 Slide 25

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Time (cont’d)

I Because one wants to specify reactive systems at the highest
level of abstraction in a discrete fashion, events are discrete
signals, occurring at a point in time.

I Events have no duration; they are generated from one state to
another.

I Hence, transitions have a discrete uninterruptable nature and
all time is spent in states.

Fall 2007 EE 249 Slide 26

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Reason

In a reactive system new inputs may arrive at any moment.
Therefore the current state it is in should be always clear. Since
transitions have no duration, there are no “transient” periods in
between states.
Therefore, the reaction on a possible input is always well defined.

Of course this is an abstraction from reality. (At deep
levels of electronic implementations, one encounters
levels where discrete reasoning makes no sense anymore)

Statecharts is meant to be a high level specification language,
where this abstraction can be maintained and is appropriate.

Fall 2007 EE 249 Slide 27

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Reaction Time

I We know that transitions have no duration, but when do they
take place, relative to the trigger? And:

How long does it take the system to compute a reaction
upon an external event?

I For transformational systems this is easy—the only important
distinction is between finite and infinite values (corresponding
to a final state or no final state)

I For reactive systems this is not enough:
We have to know when an output occurs relative to the
events in the input sequence =⇒
One has to determine the reaction time of a sequence.

Fall 2007 EE 249 Slide 28

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Reaction Time in Statecharts

Question: What’s the reaction time of a reactive system upon an
external event in Statecharts?

Possibility 1
Specify a concrete amount of time for each situation.

I This forces us to quantify time right from the beginning.

I This is clumsy, and not appropriate at this stage of
specification where one is only interested in the relative order
and coincidence of events.

Fall 2007 EE 249 Slide 29

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Reaction Time in Statecharts

Question: What’s the reaction time of a reactive system upon an
external event in Statecharts?

Possibility 2
Fix reaction time between trigger a and corresponding action a
within e/a (the label of a transition) upon 1 time unit.

I Doesn’t work: Upon refining question/answer to a
question/consult and a consult/answer transition, there’s a
change of time, which may have far reaching consequences
(e. g., because of tm(n)-events)

I =⇒ A fixed execution time for syntactic entities (transitions,
statements, etc.) is not flexible enough.

Fall 2007 EE 249 Slide 30

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Reaction Time in Statecharts

Question: What’s the reaction time of a reactive system upon an
external event in Statecharts?

Possibility 3
Leave things open

I Say only that execution of a reaction takes some positive
amount of time, and see at a later stage (closer to the actual
implementation) how much time things take.

I Clumsy, introduces far too much nondeterminism.

Fall 2007 EE 249 Slide 31

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Solution

Summary: We want the execution time associated to reactions to
have following properties:

1. It should be accurate, but not depending on the actual
implementation.

2. It should be as short as possible, to avoid artificial delays.

3. It should be abstract in the sense that the timing behavior
must be orthogonal to the functional behavior.

=⇒ Only choice that meets all wishes is zero reaction time.

Fall 2007 EE 249 Slide 32

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Problems Disappear

As a result all objections raised w. r. t. the possibilities mentioned
on the previous page are met!

I Now, for instance, upon refining transition question/answer
from previous page into two transitions, the reaction time of
this refinement is the same as that of the original transition.

I Objection 3 on the previous transparency is resolved, too.

I Finally, also objection 1 (on previous transparency) is met,
because 0 + 0 = 0!

Fall 2007 EE 249 Slide 33

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Berry’s synchrony hypothesis

I This choice, that the reaction time between a trigger and its
event is zero, is called Berry’s synchrony hypothesis.

I Is this implementable? No, a real computation takes time.

I However, in actual implementation this means:

The reaction comes before the next input arrives,

or, put another way,

Reactions are not infinitely fast, but fast enough.

Fall 2007 EE 249 Slide 34

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Example

See the following figure:

A consequence is that transition t3 is taken!!

Fall 2007 EE 249 Slide 35

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Negations and paradoxes
I Idea of immediate reaction works fine as long as transitions

only triggered by primitive events, or conjunctions and
disjunctions of them.

I However, one also needs negations of events to trigger a
transition.

I Example: To specify priority between (reacting on) event a
and event b

Fall 2007 EE 249 Slide 36

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Problem: Grandfather Paradoxon
What semantics to give to this Statechart?

Fall 2007 EE 249 Slide 37

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Grandfather Paradoxon

It’s solution is to order event occurrences causally, with later
events not influencing earlier events:¬a ≤ b ≤ a

Note here: This causal order has nothing to do with the
passage of time; it merely refers to causal chains within
one time step.

Fall 2007 EE 249 Slide 38

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Solution

Introduce two levels of time

I Macro steps, for counting time, (these are observable) time
steps, and

I Micro steps, which describe the causal chain within reactions.
Every macro-step is then divided in an arbitrary but finite
number of micro-steps.

This sequence of micro-steps has only an operational meaning.

Fall 2007 EE 249 Slide 39

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

The STATEMATE Semantics

This leads to a semantics of the following form:

Micro-steps

expressing
causal order

Time, measured by Macro-steps,

where a macro-step is a sequence of
micro-steps which cannot be prolonged

Fall 2007 EE 249 Slide 40

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

The STATEMATE Semantics (cont’d)

I Macro-steps are observable steps =⇒O
I

I Each macro-step is a sequence of micro-steps, that is ordered
causally; one micro-step can never influence previous
micro-steps.

I In Statecharts as implemented by STATEMATE
(“Harel-Statecharts”):

I Causality is trivially obtained because in STATEMATE events
generated in one step are only available in the next step, and
only for that one.

I I. e., there is no causality within one step.

Fall 2007 EE 249 Slide 41

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Hierarchy
Orthogonality
Broadcast
Time in Statecharts

Problems with STATEMATE Semantics

The problem with macro-steps is that they lead to a globally
inconsistent semantics.

S1 =⇒b
∅ S2 =⇒a

b S3

Here absence of triggers generates presence of triggers, which
violates their absence within the same step.

Fall 2007 EE 249 Slide 42

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Overview

Finite State Machines

Statecharts

Stateflow
Simulink Interface
Semantics

SyncCharts (Safe State Machines)

Fall 2007 EE 249 Slide 43

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow

Stateflow is a special module embedded in Matlab/Simulink (The
MathWorks). It is used to model state based control and
supervisory logic inside Simulink.

I Different modelling environment

I Control is state based

I Syntax is a Statechart dialect

I Semantics differ from synchronous SyncCharts (E-Studio)

I Interfaces to Simulink environment

I Features states, transitions, events, trigger, conditions,
actions, parallelism, hierarchy

Fall 2007 EE 249 Slide 44

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow: States

Fall 2007 EE 249 Slide 45

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow: Transitions and Actions

Fall 2007 EE 249 Slide 46

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Simulink Interface
Stateflow Charts can be embedded into Simulink models.

Stateflow distinguishes: Data (only values) and Events (only
boolean signals). Stateflow charts get evaluated only either at

I events: Data changes are only detected if some other event
happened (if no external event occurs, the chart is not
evaluated)

I predefined sample time: Chart is evaluated regularly: Also
data changes are detected. No external event inputs allowed.

Fall 2007 EE 249 Slide 47

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow Semantics

I Stateflow semantics are not formally specified, only informally
by Stateflow manual.

I Single-Event run-to-completion semantics

I Exactly one event is evaluated when it occurs

⇒ Triggers with multiple concurrent events (e. g. “A and B”) are
not possible (only disjunction is possible, using the OR
operator: “A ‖ B”)

⇒ Negation of events (e. g. “not A”) is not possible

I Parallel states are evaluated by some predefined execution
order, depending on graphical layout/user input (see next
slide)

Fall 2007 EE 249 Slide 48

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Events and Actions

Event When event occurs

I it is processed from the top or root of the diagram down
through the hierarchy.

I At each level in the hierarchy a check for the existence of a
valid explicit or implicit transition among the children of the
state is conducted.

Condition Action I Executed as soon as the condition is evaluated as true,
I but before the transition destination has been determined to

be valid.
I No condition =⇒ an implied condition evaluates to true and

the condition action is executed

Transition Actions I Executed when the transition is actually taken:
I Executed after the transition destination has been determined

to be valid
I and the condition, if specified, is true
I Consists of multiple segments =⇒ only executed when the

entire transition path to the final destination is valid

Fall 2007 EE 249 Slide 49

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow Example: Early Return Logic
Event a is triggered from outside

I chart1 takes the normal transition and executes its transition
action after F was decided to be the next active state

I When a is triggered, chart2 evaluates its outgoing transition
from E to F. Condition is true =⇒ its condition action is
executed immediately and especially while E is still the active
state. Now event c is handled while E is still active and
therefore the transition from E to G is finally taken.

Fall 2007 EE 249 Slide 50

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow Run-To-Completion Semantics

I If an event is broadcast, the active transitions triggered by
this event are evaluated successively according to the
execution order of their parent states (e. g. in parallel states)

I In each transition evaluation, new signals might be emitted by
transition or condition actions

I Each new event emission calls this interpretation algorithm
immediately recursively and runs to completion

I and only then resumes with the processing of the next
transition for the original event.

Fall 2007 EE 249 Slide 51

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow Example 1
Event a is triggered from outside

Fall 2007 EE 249 Slide 52

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

Simulink Interface
Semantics

Stateflow Example 3

What happens here when signal b is emitted?

Stack Overflow (runtime exception in newer Simulink versions)

Fall 2007 EE 249 Slide 53

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Overview

Finite State Machines

Statecharts

Stateflow

SyncCharts (Safe State Machines)
States
Transitions
Connectors
Esterel Studio

Fall 2007 EE 249 Slide 54

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Similarities

SyncCharts are made up of elements common to most Statecharts
dialects:

I States

I Initial/terminal states

I Transitions

I Signals/Events

I Hierarchy

I Modularity

I Parallelism

Fall 2007 EE 249 Slide 55

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Differences

SyncCharts differ from other implementations of Statecharts:

I Synchronous framework

I Determinism

I Compilation into backend language Esterel

I No interpretation for simulations

I No hidden behaviour

I Multiple events

I Negation of events

I No inter-level transitions

Fall 2007 EE 249 Slide 56

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Simple Sequential Automaton

SyncChart:

main

S2

S1

I

/B

/A

Elements:
I States:

I Regular state (circle)
I Terminal state (doubled circle)
I Hierarchic state (box with rounded edges)

I Transitions:
I Arrows with labels

I Connectors:
I Colored circles with single letters

Fall 2007 EE 249 Slide 57

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Hierarchic States

main_hier

I

S0

T

Graphic Macrostate

S1
Textual Macrostate

I HS1

HS2HS3

HS4 HT

<2>
<1>

emit B;
if ?A = 3 then
 emit D
end;
await C

SyncCharts know four types of states:

I Simple States: Carry just a label.

I Graphic Macrostates: Encapsulates a
hierarchy of other states, including
further graphic states.

I Textual Macrostates: Contain
statements of the Esterel language.
They are executed on entry of the
state.

I Run Modules: Include other modules.

Transitions are not allowed to cross the boundaries of graphic
macrostates. This is in contrast to other modelling tools.

Fall 2007 EE 249 Slide 58

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Parallel States

main_parallel

I

Wait for A

I

A/

I

Wait for B

B/

I Dashed lines (horizontal or vertical)
separate parallel executed states inside
a graphic macrostate.

I Each segment may be segmented into
further parallel segments, but iterative
segmentation does not introduce
additional hierarchy. All parallel
segments in a graphic macrostate are
at the same level.

Fall 2007 EE 249 Slide 59

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Parallel States

main_parallel

I

Wait for A

I

A/

I

Wait for B

B/

I A transition outside the graphic
macrostate with normal termination is
activated, when all parallel segments
have reached their terminal state.

I If just one segment does not have one
or if it is not reached, then the normal
termination transition will never be
activated.

Fall 2007 EE 249 Slide 60

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Modules

m

I

I/O

A module like this with an interface:

input I;

output O;

main_moduse

S1,
S2

I

m1@m[..]

. . . can be used as a Run Module with
these signal bindings:

signal S1 / I;

signal S2 / O

Fall 2007 EE 249 Slide 61

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Syntax of Transition Labels
main_trans

S2S1

I
..Label

Informal syntax of a transition label be-
tween states S1 and S2, all elements are
optional:

factor trigger {condition} / effect

Basic activation and action:

I trigger is an expression of signal presence like “A or B”

I Enclosed in braces is the condition. It is a data expression
over signal values or variables like “?A=42”

I Behind a single “/” follows the “effect” as a list of emitted
signals if the transition is executed. Multiple signal names are
separated with “,”.

Fall 2007 EE 249 Slide 62

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Syntax of Transition Labels

main_trans

S2S1

I
..Label

Informal syntax of a transition label be-
tween states S1 and S2, all elements are
optional:

factor trigger {condition} / effect

Extensions:

I “#” is the flag for an immediate transition

I “factor” is the (natural) number of instants a transition
must be active before it is executed. These active instants
does not need to be consecutive, but S1 must be active all the
time.

Fall 2007 EE 249 Slide 63

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Labels: Examples
main_trans

S2S1

I
..Label

The following label examples belong to
the transition originating at S1 and lead-
ing to S2:

I A/B
After entering S1 the signal A is tested from the next instant
on. If A is present, then B is emitted in the same instant and
state S2 is entered.

I /B
After enabling S1, B is emitted in the next instant and S2 is
entered.

I 3 A/
The transition is executed, if S1 is active consecutively and
signal A is present for 3 times.

Fall 2007 EE 249 Slide 64

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Labels: Examples
I #A/

If S1 is entered, signal A is tested from the same instant on. If
A is present in the instant S1 is entered then state S2 is
entered in the same instant.

I {?A=42}/
The transition is executed, if the (valued) signal A carries the
value 42. A does not need to be present for this test.

I A {?A=42}/
This test succeeds if A is present and carries the value 42.

I A and (B or C)/
Logical combination of signal presence.

I {?A=10 and (?B<3 or ?C=1)}/
Logical combination of value tests.

I /A(2), B(4)
Emission of multiple valued signals.

Fall 2007 EE 249 Slide 65

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Priorities

main_prio

I

S0

S2

B/
<2>

S1

S3

A/
<1>

I When more than one transition departs a
state, an automatic (but editable) priority
ordering is established.

I The transition labels are evaluated
according to their priority.

I The first label that succeeds activates its
transition.

I Low numbers mean high priority.

Fall 2007 EE 249 Slide 66

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Types

SyncCharts feature four different types of transitions: They are
differentiated by a symbol at the arrow root:

main_transdiff

I

I Initial connector: Initial arc
Initial arcs connect the initial connectors of
the chart with the other states.

I No symbol: Weak abort
When the trigger/condition of the transition
is enabled, then the actions of the originating
state in the current instant are executed for a
last time, then the transition action, and the
entry action of the new state.
In other words:
The old state can “express it’s last will”.

Fall 2007 EE 249 Slide 67

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Types

main_transdiff

I I Red bullet: Strong abort
The action for the current instant of the old
state is not executed. Only the transition
action and the entry action of the new state
is executed.

I Green triangle: Normal termination
This transition can be used to exit macro
states. It is activated when the macro state
terminates.

All these transition types must not be confused with “immediate”
or “delayed” evaluation of the transition label (label prefix “#”).

Fall 2007 EE 249 Slide 68

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Types and Labels

Some transition types have restrictions on their labels:
main_transdiff

I

I Initial arc:
These are always “immediate,” therefore the
additional flag “#” is not needed.

I Weak abort: No restrictions.

I Strong abort: No restrictions.

I Normal termination:
They support no triggers or conditions
because they are activated by the termination
of the originating state. The immediate flag
is not used either.

Fall 2007 EE 249 Slide 69

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Transition Types and Priorities

The type of a transition interacts with it’s priority:

I Strong abort: Highest priority

I Weak abort: Middle priority

I Normal termination: Lowest priority

Esterel Studio enforces these rules by changing the numerical
priorities of the transitions.

Fall 2007 EE 249 Slide 70

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Local Signals and Variables

main_signal

I

II

B/
A/B(20)

var c:integer

B:integer

c := 30;

Local signals:

I Defined in the body of a
graphical macrostate

I Shared between parallel threads

Local variables:

I Attached to the initial
connector

I Not shared

Fall 2007 EE 249 Slide 71

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Connectors

This (artificial) SyncChart demonstrates all four connector states:

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

Initial connector:

I Activated at activation of the
macrostate

I Only departing transitions permitted

I All connected transitions are
“immediate”

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>
Conditional connector:

I All departing transitions are
“immediate”

I One departing “default” transition
without condition must be present.

Fall 2007 EE 249 Slide 72

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Connectors

This (artificial) SyncChart demonstrates all four connector states:

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

Suspend connector:

I The suspend state is always active.

I Only one departing transitions is
permitted.

I The transition can only hold a trigger
expression.

I The “immediate” flag can be enabled
on demand.

I When the transition is activated, then
the target state is (strongly)
suspended.

Fall 2007 EE 249 Slide 73

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Connectors

This (artificial) SyncChart demonstrates all four connector states:

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

main_conn

sub state

S

C/

I

var i:integer

H*

D/

I

C

A/

/B(10)

<2>
[i<10]/
B(i)

<1>

History connector:

I This connector is directly attached to
macrostates

I Only incoming transitions can connect.

I The previous state of the macrostate
is restored when it is entered through
a history connector.

Fall 2007 EE 249 Slide 74

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

Esterel Studio

http://www.esterel-technologies.com/

Esterel Studio features:

I Graphical editor for Statechart dialect “Safe State Machines”,
a. k. a. SyncCharts

I Code generator for textual Esterel

I Esterel compiler for C code production

I Interface to backend in host language (C)

I Graphical simulation Validation/Testing environment

Fall 2007 EE 249 Slide 75

http://www.esterel-technologies.com/

Finite State Machines
Statecharts

Stateflow
SyncCharts (Safe State Machines)

States
Transitions
Connectors
Esterel Studio

To Go Further
I David Harel, Statecharts: A Visual Formulation for Complex

Systems, Science of Computer Programming, 8(3), June
1987, pp. 231–274

I D. Harel, M, Politi, Modeling Reactive Systems with
Statecharts: The STATEMATE Approach, McGraw-Hill, ISBN
0-07-026205-5, 1998.

I Charles Andr, Semantics of S.S.M (Safe State Machine),
Esterel Technologies Technical Report, April, 2003,
http://www.esterel-technologies.com/v3/?id=
50399&dwnID=48

I Home page of Esterel Technologies:
http://www.esterel-technologies.com/

I Local information on Esterel-Studio and where to find further
documentation:
http://www.informatik.uni-kiel.de/~esterel/

Fall 2007 EE 249 Slide 76

http://www.esterel-technologies.com/v3/?id=50399&dwnID=48
http://www.esterel-technologies.com/v3/?id=50399&dwnID=48
http://www.esterel-technologies.com/
http://www.informatik.uni-kiel.de/~esterel/

	Finite State Machines
	Finite Automata
	Moore Machines
	Mealy Machines

	Statecharts
	Hierarchy
	Orthogonality
	Broadcast
	Time in Statecharts

	Stateflow
	Simulink Interface
	Semantics

	SyncCharts (Safe State Machines)
	States
	Transitions
	Connectors
	Esterel Studio

