Design of Embedded Systems: Models, Validation and Synthesis (EE 249)—Lecture 9

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

4 October 2007 Last compiled: 4th October 2007, 15:13 hrs

Synchronous Languages: Lustre

Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

Lustre Assertions Data Streams Node Expansion Clock Operators

Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE (now marketed by Esterel Technologies), a tool used in software development for avionics and automotive industries
- \rightsquigarrow Translatable to FSMs with finitely many control states
 - Same advantages as Esterel for hardware and software design

Thanks to Klaus Schneider

(http://rsg.informatik.uni-kl.de/people/schneider/) for providing part of the following material

Lustre Assertions Data Streams Node Expansion Clock Operators

Lustre Modules

General form:

```
node f(x_1:\alpha_1, ..., x_n:\alpha_n) returns (y_1:\beta_1,...,y_m:\beta_m)
var z_1:\gamma_1,...,z_k:\gamma_k;
let
z_1 = \tau_1; ...; z_k = \tau_k;
y_1 = \pi_1; ...; y_m = \pi_k;
assert \varphi_1; ...; assert \varphi_\ell;
tel
```

where

- f is the name of the module
- Inputs x_i , outputs y_i , and local variables z_j
- Assertions φ_i (boolean expressions)

Lustre Assertions Data Streams Node Expansion Clock Operators

Lustre Programs

- Lustre programs are a list of modules that are called nodes
- All nodes work synchronously, i. e. at the same speed
- Nodes communicate only via inputs and outputs
- No broadcasting of signals, no side effects
- Equations $z_i = \tau_i$ and $y_i = \pi_i$ are not assignments
- Equations must have solutions in the mathematical sense

Lustre Assertions Data Streams Node Expansion Clock Operators

Lustre Programs

As $z_i = \tau_i$ and $y_i = \pi_i$ are equations, we have the Substitution Principle:

The definitions $z_i = \tau_i$ and $y_i = \pi_i$ of a Lustre node allow one to replace z_i by τ_i and y_i by π_i .

Behavior of z_i and y_i completely given by equations z_i = τ_i and y_i = π_i

Lustre Assertions Data Streams Node Expansion Clock Operators

Assertions

- Assertions assert φ do not influence the behavior of the system
- \blacktriangleright assert φ means that during execution, φ must invariantly hold
- Equation X = E equivalent to assertion assert(X = E)
- Assertions can be used to optimize the code generation
- Assertions can be used for simulation and verification

Lustre Assertions Data Streams Node Expansion Clock Operators

Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- Example: given x = (0, 1, 2, 3, 4, ...) and y = (0, 2, 4, 6, 8, ...), then x + y is the stream (0, 3, 6, 9, 12, ...)
- However, streams may refer to different clocks
- $\rightsquigarrow\,$ Each stream has a corresponding clock

Lustre Assertions Data Streams Node Expansion Clock Operators

Data Types

- Primitive data types: bool, int, real
- Imported data types: type α
 - Similar to Esterel
 - Data type is implemented in host language
- Tuples of types: $\alpha_1 \times \ldots \times \alpha_n$ is a type
 - Semantics is Cartesian product

Lustre Assertions Data Streams Node Expansion Clock Operators

Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - τ_1 and τ_2 , τ_1 or τ_2 , not τ_1
- Numeric expressions:

• $\tau_1 + \tau_2$ and $\tau_1 - \tau_2$, $\tau_1 * \tau_2$ and τ_1 / τ_2 , τ_1 div τ_2 and $\tau_1 \mod \tau_2$

Relational expressions:

• $\tau_1 = \tau_2, \ \tau_1 < \tau_2, \ \tau_1 \le \tau_2, \ \tau_1 > \tau_2, \ \tau_1 \ge \tau_2$

- Conditional expressions:
 - if b then τ_1 else τ_2 for all types

Lustre Assertions Data Streams Node Expansion Clock Operators

Node Expansion

- Assume implementation of a node f with inputs x₁ : α₁, ..., x_n : α_n and outputs y₁ : β₁, ..., y_m : β_m
- ▶ Then, *f* can be used to create new stream expressions, *e. g.*, $f(\tau_1, \ldots, \tau_n)$ is an expression
 - Of type $\beta_1 \times \ldots \times \beta_m$
 - If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$

Lustre Assertions Data Streams Node Expansion Clock Operators

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```
node f(x:\alpha) returns (y:\beta)

var z:\gamma;

let

z = \tau;

y = \pi;

assert \varphi;

tel
```

Lustre Assertions Data Streams Node Expansion Clock Operators

Clock-Operators

- All expressions are streams
- Clock-operators modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
 - pre τ for every stream τ
 - ▶ $\tau_1 \rightarrow \tau_2$, (pronounced "followed by") where τ_1 and τ_2 have the same type
 - τ_1 when τ_2 where τ_2 has boolean type (downsampling)
 - current τ (upsampling)

Lustre Assertions Data Streams Node Expansion Clock Operators

Clock-Hierarchy

- As already mentioned, streams may refer to different clocks
- We associate with every expression a list of clocks
- A clock is thereby a stream φ of boolean type
- Whenever this stream φ is true (considered at its clock), a point in time is selected that belongs to the new clock hierarchy

Lustre Assertions Data Streams Node Expansion Clock Operators

Clock-Hierarchy

▶ clocks(\(\tau\)) := [] if expression \(\tau\) does not contain any clock operator

•
$$clocks(pre(\tau)) := clocks(\tau)$$

- ► clocks(\(\tau_1 \cop > \tau_2\)) := clocks(\(\tau_1\)), where clocks(\(\tau_1\)) = clocks(\(\tau_2\)) is required
- ► clocks(τ when φ) := [φ , c_1 ,..., c_n], where clocks(φ) = clocks(τ) = [c_1 ,..., c_n]
- ▶ clocks(current(τ)) := [c₂,..., c_n], where clocks(τ) = [c₁,..., c_n]

Lustre Assertions Data Streams Node Expansion Clock Operators

Semantics of Clock-Operators

- $\llbracket pre(\tau) \rrbracket := (\bot, \tau_0, \tau_1, \ldots)$, provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
- $\llbracket \tau \rightarrow \pi \rrbracket := (\tau_0, \pi_1, \pi_2, \ldots),$ provided that $\llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$ and $\llbracket \pi \rrbracket = (\pi_0, \pi_1, \ldots)$
- $\llbracket au$ when $\varphi
 rbracket = (au_{t_0}, au_{t_1}, au_{t_2}, \ldots)$, provided that
 - $\bullet \ \llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$
 - ▶ $\{t_0, t_1, \ldots\}$ is the set of points in time where $\llbracket \varphi \rrbracket$ holds
- $\llbracket \text{current}(\tau) \rrbracket = (\bot, \dots, \bot, \tau_{t_0}, \dots, \tau_{t_0}, \tau_{t_1}, \dots, \tau_{t_1}, \tau_{t_2}, \dots)$, provided that

$$\bullet \ \llbracket \tau \rrbracket = (\tau_0, \tau_1, \ldots)$$

► {t₀, t₁,...} is the set of points in time where the highest clock of current(τ) holds

Lustre Assertions Data Streams Node Expansion Clock Operators

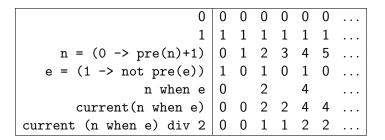
Example for Semantics of Clock-Operators

φ	0	1				0	
τ	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$
pre(au)	\bot	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$
au -> pre($ au$)	$ au_0$	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_{4}$	τ_5
au when $arphi$		$ au_1$		$ au_3$			τ_6
$\texttt{current}(au \; \texttt{when} \; arphi)$	\perp	$ au_1$	$ au_1$	$ au_3$	$ au_3$	$ au_3$	τ_6

- ▶ Note: $\llbracket \tau \text{ when } \varphi \rrbracket = (\tau_1, \tau_3, \tau_6, \ldots), i. e., \text{ gaps are not filled!}$
- This is done by current(τ when φ)

Example: Clock Expressions Example: Counter Example: ABRO

Example for Semantics of Clock-Operators



Example: Clock Expressions Example: Counter Example: ABRO

Example for Semantics of Clock-Operators

$n = 0 \rightarrow pre(n)+1$	0	1	2	3	4	5	6	7	8	9	10	11
d2 = (n div 2)*2 = n	1	0	1	0	1	0	1	0	1	0	1	0
n2 = n when $d2$			2		4		6		8		10	
d3 = (n div 3)*3 = n	1	0	0	1	0	0	1	0	0	1	0	0
n3 = n when $d3$				3			6			9		
d3' = d3 when $d2$	1		0		0		1		0		0	
n6 = n2 when $d3'$							6					
c3 = current(n2 when d3')			0		0		6		6		6	

Example: Clock Expressions Example: Counter Example: ABRO

Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
    n = x0 -> if r then x0 else pre(n) + d
tel
```

- Initial value of n is x0
- If no reset r then increment by d
- If reset by r, then initialize with x_0
- Counter can be used in other equations, e.g.
 - even = Counter(0, 2, 0) yields the even numbers
 - mod₅ = Counter(0, 1, pre(mod₅) = 4) yields numbers mod 5

Example: Clock Expressions Example: Counter Example: ABRO

ABRO in Lustre

```
node EDGE(X:bool) returns (Y:bool);
let
  Y = false -> X and not pre(X);
tel
node ABRO (A,B,R:bool) returns (O: bool);
  var seenA, seenB : bool;
let
  O = EDGE(seenA and seenB);
  seenA = false -> not R and (A or pre(seenA));
  seenB = false -> not R and (B or pre(seenB));
tel
```

Causality Clock Consistency

Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions
- \sim Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs

Causality Clock Consistency

Causality Problems in Lustre

- x = τ is acyclic, if x does not occur in τ or does only occur as subterm pre(x) in τ
- Examples:
 - a = a and pre(a) is cyclic
 - a = b and pre(a) is acyclic
- Acyclic equations have a unique solution!
- Analyze cyclic equations to determine causality?
- But: Lustre only allows acyclic equation systems
- Sufficient for signal processing

Malik's Example

However, some interesting examples are cyclic

```
y = if c then y_f else y_g;
y_f = f(x_f);
y_g = g(x_g);
x_f = if c then y_g else x;
x_g = if c then x else y_f;
```

- Implements if c then f(g(x)) else g(f(x)) with only one instance of f and g
- Impossible without cycles

Sharad Malik. Analysis of cyclic combinatorial circuits.

in IEEE Transactions on Computer-Aided Design, 1994

Causality Clock Consistency

Clock Consistency

Consider the following equations:

b = 0->not pre(b); y = x + (x when b)

We obtain the following:

X	<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	
Ь	0	1	0	1	0	
x when b		x_1		<i>x</i> ₃		
x + (x when b)	$x_0 + x_1$	$x_1 + x_3$	$x_2 + x_5$	$x_3 + x_7$	$x_4 + x_9$	

- ► To compute $y_i := x_i + x_{2i+1}$, we have to store x_i, \ldots, x_{2i+1}
- Problem: not possible with finite memory

Causality Clock Consistency

Clock Consistency

- Expressions like x + (x when b) are not allowed
- Only streams at the same clock can be combined
- What is the 'same' clock?
- Undecidable to prove this semantically
- Check syntactically

Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:

$$x = a$$
 when $(y > z)$;
 $y = b + c$;
 $u = d$ when $(b + c > z)$;
 $v = e$ when $(z < y)$;

- x and u have the same clock
- x and v do not have the same clock

Arrays

- Given type α , α^n defines an array with *n* entries of type α
- Example: x: bool^n
- The bounds of an array must be known at compile time, the compiler simply transforms an array of *n* values into *n* different variables.
- ► The i-th element of an array X is accessed by X[i].
- ► X[i..j] with i ≤ j denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.

Arrays Static Recursion

Example for Arrays

```
node DELAY (const d: int; X: bool) returns (Y: bool);
var A: bool^(d+1);
let
    A[0] = X;
    A[1..d] = (false^(d))-> pre(A[0..d-1]);
    Y = A[d];
tel
```

- false^(d) denotes the boolean array of length d, which entries are all false
- Observe that pre and -> can take arrays as parameters
- Since d must be known at compile time, this node cannot be compiled in isolation
- ▶ The node outputs each input delayed by *d* steps.

So
$$Y_n = X_{n-d}$$
 with $Y_n = false$ for $n < d$

Static Recursion

- Functional languages usually make use of recursively defined functions
- Problem: termination of recursion in general undecidable
- $\rightsquigarrow\,$ Primitive recursive functions guarantee termination
 - Problem: still with primitive recursive functions, the reaction time depends heavily on the input data
- \rightsquigarrow Static recursion: recursion only at compile time
 - Observe: If the recursion is not bounded, the compilation will not stop.

Arrays Static Recursion

Example for Static Recursion

```
Disjunction of boolean array
```

```
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
y = with n=1 then x[0]
    else x[0] or BigOr(n-1,x[1..n-1]);
tel
```

- Constant n must be known at compile time
- Node is unrolled before further compilation

Arrays Static Recursion

Example for Maximum Computation

Static recursion allows logarithmic circuits:

```
node Max(const n:int; x:int^n) returns (y:int)
var y_1,y_2: int;
let
y_1 = with n=1 then x[0]
        else Max(n div 2,x[0..(n div 2)-1]);
y_2 = with n=1 then x[0]
        else Max((n+1) div 2, x[(n div 2)..n-1]);
y = if y_1 >= y_2 then y_1 else y_2;
tel
```

Arrays Static Recursion

Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false -> pre(REC_DELAY(d-1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:

Y = false -> pre(Y2) Y2 = false -> pre(Y1) Y1 = false -> pre(Y0) Y0 = X;

Summary

- Lustre is a synchronous dataflow language.
- The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
- Additional datatypes for real and integer numbers are also implemented.
- User types can be defined as in Esterel.
- Lustre only allows acyclic programs.
- Clock consistency is checked syntactically.
- Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.

Arrays Static Recursion

To Go Further

- Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre, 2002 http://www-verimag.imag.fr/~halbwach/ lustre-tutorial.html
- Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud, The Synchronous Data-Flow Programming Language Lustre, In Proceedings of the IEEE, 79:9, September 1991, http://www-verimag.imag.fr/~halbwach/lustre: ieee.html