
STATEMATE Semantics 

of Statecharts

Presentation by:

EE 249 Journal Paper Presentation

Jerry Ding
Jimmy Su



Basic Step Algorithm

•Algorithm for executing single step of Statecharts
•Inputs

–Status of system 
–Current time (time unit defined by clock rate)
–External changes (events, changes in values of conditions and data-items)

•Output:•Output:
–New system status

•Representation of system status
–Active states
–System activities
–Current values of conditions and data-items
–Internal events generated in previous step
–Scheduled actions
–Timeout events
–History of States



Basic Step Algorithm
Stage 1: Step Preparation

•Add external events to event list
•Modify values of conditions, data-items, activities 
according to external changes
•Evaluate scheduled events

–Action sc(a,d) adds (a, next-a) to scheduled event list–Action sc(a,d) adds (a, next-a) to scheduled event list
–Execute scheduled action ‘a’ if next-a <= current time

•Evaluate timeout events
–(E, next-E) in event list
–E = tm(e, d)
–If trigger ‘e’ generated, set next-E
–Generate timeout event E when next-E <= current time



Basic Step Algorithm
Stage 2: Compute Contents 

of the Step

•Find set of enabled compound transitions (CTs)
•Eliminate conflicting CTs with lower priorities
•Construct non-conflicting transition sets from 
remaining CTs remaining CTs 
•For each non-conflicting set, determine enabled 
static reactions (SRs)
•Possible Scenarios

–No enabled CTs or SRs – empty step
–Single set of CTs and SRs
–Multiple sets of CTs and SRs - nondeterminism



Basic Step Algorithm
Stage 3: Execute the CTs and 

SRs

•For each enabled SR, execute associated 
action
•For each enabled CT

–Update history for parents of exited states–Update history for parents of exited states
–Delete exited states from list of active states
–Execute actions associated with 

•States exited by CT
•CT itself
•States entered by CT

–Add entered states to list of active states



Basic Step Algorithm
Example for Computing 

Nonconflicting Sets

•Enabled non-conflicting sets
–{t3,t4,t7,sr1,sr2,sr3}
–{t3,t4,t8,sr1,sr2,sr3}
–{t3,t4,t9,sr1,sr2,sr3}
–{t3,t6,t7,sr1,sr2,sr3}
–{t3,t6,t8,sr1,sr2,sr3}
–{t3,t6,t9,sr1,sr2,sr3}



Basic Step Algorithm
Implementation Issues

•Assignment of values in two stages:
–Create list {element, new-value}
–Assign all values at end of step
–Insensitive to order of execution

•Conflicting assignments•Conflicting assignments
–Element assigned value twice in single step
–Write-write racing
–Last assignment counts

•Chain reactions
–Default: activity and subactivities executed in same step
–Activity with controls: subactivities activated on following step



Basic Step Algorithm
Implementation Issues

•Events generated in a step 
collected in list as input to next 
step

•Scheduled events•Scheduled events
–Action sc(a,d)
–Added to scheduled events list as 
(a, current-time + d)

•Termination Connector
–Considered basic state
–When entered, no more steps 
executed



Models of Time in 

Statecharts

•STATEMATE supports two timing models:
–Synchronous
–Asynchronous

•Synchronous time model
–Assume single step executed every time unit–Assume single step executed every time unit
–Reacts to external changes occurred since end of previous 
step

•Asynchronous time model
–Reacts when external changes occur
–Allows several changes to occur simultaneously
–Allows several steps at once – superstep

•In both models, execution of step takes zero time



Synchronous Time 

Model
•Suited for systems synchronized on system 
clock
•In STATEMATE, single step executed using 
‘GO’ command‘GO’ command
•Semantics for GO (assume previous step at t)

–Execute external changes since end of last step
–Increment system clock
–Execute timeout and scheduled actions with due 
time in interval (t, t+1]
–Execute basic step algorithm



Asynchronous Time 

Model
•Suited for reactive systems
•Execution of step does not advance time
•In STATEMATE, GO-REPEAT command 
executes superstepexecutes superstep
•Semantics for GO-REPEAT

–Execute external changes since end of last step
–Execute timeout and scheduled actions that are due
–Execute basic step algorithm until system in stable 
state (no generated events, no enabled CTs, SRs)

•GO-REPEAT may result in infinite loop



Asynchronous Time 

Model
•Example of GO-REPEAT execution

–Assume C1, C2, C3 false, and event e generated



Asynchronous Time 

Model
•To advance time, need to execute GO-
ADVANCE
•Assume current time = t, want to advance to 
time t + ntime t + n
•Semantics for GO-ADVANCE

–Execute external changes since end of last step
–Repeat until time = t + n

•Execute due timeout and scheduled events
•Execute GO-REPEAT
•Increment time to nearest timeout or scheduled event



Asynchronous Time 

Model
•Other commands supported by STATEMATE:

–GO-STEP
–GO-NEXT
–GO-EXTENDED

•GO-STEP: perform single step without advancing time•GO-STEP: perform single step without advancing time
•GO-NEXT: advance clock to nearest timeout or 
scheduled event
•GO-EXTENDED: combination of GO-NEXT and GO-
REPEAT

–Advance clock to nearest timeout or scheduled event
–Execute timeout and scheduled events
–Execute superstep



STATEMATE 

Generated Code
•RTL code style

–VHDL or Verilog code
–Steps sensitive to rising or falling edge of clock
–Similar to synchronous mode

•Behavioral code style•Behavioral code style
–Reacts to input changes when they occur
–Similar to asynchronous mode

•Two schedulers
–CPU clock time – steps take more than zero time
–Simulated clock – advances time only when system reaches 
stable state



Racing Conditions

•Two cases:
–Value of element modified more than once at single point in 
time
–Value of element modified and used in single point in time

•Transitions or actions in one step can be in conflict with •Transitions or actions in one step can be in conflict with 
another step
•Racing conditions in superstep

–Enabling order: each transition must be executed after the 
transition that enabled it
–If two executions obeys enabling order but produce different 
results, then racing detected



Racing Conditions

•Example of racing



Multiple Statecharts

•Can be interpreted as orthogonal components in a 
superstate
•Used to represent concurrency 
•Termination of one statechart does not affect others•Termination of one statechart does not affect others
•Statecharts can be reactivated in default configuration
•Asynchronous model – All statecharts executes 
superstep at same time
•Synchronous model – Each statechart may have 
different time units for evaluating time expressions



Multiple Statecharts

•Example of multiple statecharts


