
EE 249 Discussion: Synthesis of

Embedded Software using Free-

Choice Petri Nets

By :Marco Sgroi, Luciano Lavagno,
Alberto Sangiovanni-Vincentelli

Shanna-Shaye Forbes

Software synthesis from a concurrent

functional specification is a problem functional specification is a problem

in the design of embedded systems.

What’s wrong?
You don’t have pure data flow.

If pure data flow you can apply a fully static scheduling
technique.(complete behavior is predicted at compile time)

What is the alternative?

If some data dependent structures (if-then-else,while-do) are
present apply quasi static scheduling. The system can’t be predicted
at compile time b/c some decisions are made at run-time.

The paper proposed a quazi-static scheduling algorithm that
generates a schedule in which run-time decisions are made only for
data- depended control structures.

The algorithm takes as input a Petri Nets (PN)

model of the system and produces as output a

software implementation consisting of a set of

software tasks that are invoked at run-time by software tasks that are invoked at run-time by

the Real-Time Operating System (RTOS).

Why Petri Nets?

Petri Nets can express concurrency, non-
deterministic choice, synchronization and
causality and because most properties,
including schedulability, are decidable for PNs.

In particular, we use a sub-class of PNs called
Free-Choice (FCPNs), because they exhibit
clear distinction between the notions of
concurrency and choice.

• Can one transition be enabled without the

other?

A FCPN is quasi-statically schedulable if for

every possible resolution of the control at the

choice places, there exists a cyclic finite

sequence that returns the tokens of the net sequence that returns the tokens of the net

to their initial places.

In a) is a is a valid schedule because for every solution of

the conflict between transitions t2 and t3, it is possible to complete a

cycle that returns the net to the initial marking by firing t4 after t2, or t5

after t3.

b) is not schedulable because there exists no finite complete cycle if the

conflict is always solved choosing t2 (t3). In fact if the token values in p1

are such that t2 (t3) always fired, unbounded accumulation of tokens

occurs at place p2(p3).

Why is this schedulable if 3b wasn’t schedulable?

The net shown in figure 4 is schedulable and is a valid

schedule.

If fire in this order, one token remains in place p2 and the net does not

return to the initial marking The net is considered schedulable because repeated

executions of this sequence do not result in unbounded accumulation of tokens

(as soon as there are two tokens in place p2 transition t4 Is fired and the tokens

are consumed).

How do you find a valid schedule?

Step 1. Decompose the net into Conflict Free (CF)

components.

Step 2. Check if every CF component is statically

schedulable

Step 3. Derive a valid schedule, if there exists one

Bird’s eye view of the algorithm

1. Check the schedulability of the petri net.
• If not schedulable, tell the designer no execution exists that can

be implemented forever with bounded memory
• Else if the net is schedulable:

• Compute a quasi-static schedule (decompose net into • Compute a quasi-static schedule (decompose net into
statically schedulable components)

• Derive a software implementation by traversing the
schedule and replacing transitions with the corresponding
code.

How do u generate code from the
schedule?

Questions?

