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What are Petri Nets

� A graphical & modeling tool.

� Describe systems that are concurrent, 
asynchronous, distributed, parallel, 
nondeterministic, and/or stochastic.
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nondeterministic, and/or stochastic.

� Graphically as a visual-communication aid 
similar to flow charts, block diagrams, and 
networks.

� Mathematically for state equations, 
algebraic equations, and behavioral models.



Application Areas

� Performance evaluation

� Communication protocols

� Modeling and analysis of distributed-
software systems

Distributed database systems
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� Distributed database systems

� Concurrent and parallel programs

� …

� Note: special modifications or restrictions 
suited to the particular application are often 
necessary.



Formal Definition
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Transition Rule

� A transition t is enabled if each input 
place p of t is marked with enough 
tokens.

� A enabled transition may or may not 
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� A enabled transition may or may not 
fire.

� A firing of an enabled transition t 
removes tokens from each input 
place and adds tokens to each output 
place.



An Example of Firing Rule
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Strict Transition Rule

� K(p): maximum number of tokens 
that place p can hold at any time.

� The number of tokens in each output 
place p of t cannot exceed its capacity 
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place p of t cannot exceed its capacity 
K(p) after firing t.

� Weak transition rule: Without the 
above capacity constraint.



An Example

8



An Example (Cont’d)
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All properties associated with a finite-capacity net can be
Discussed in terms of those with an infinite-capacity net
Using the complementary transformation.



Deterministic Parallel Activities

10

V.S.



Reachability

� A marking Mn is said reachable form a 
marking M0 if there exists a sequence of 
firings that transforms M0 to Mn.

� R(N,M0) or R(M0): the set of all possible 
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� R(N,M0) or R(M0): the set of all possible 
markings reachable from M0.

� L(N,M0) or L(M0): the set of all possible 
firing sequences from M0.

� Reachability problem: finding if Mn  R(M0)



Boundedness

� k-Bounded: if the number of tokens 
in each place does not exceed a finite 
number k for any marking reachable 
form M0, M(p)≤k, for every place p 
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form M0, M(p)≤k, for every place p 
and every marking M  R(M0).

� Safe: if 1-bounded

� Guaranteed no overflow in buffers 
and registers.



Liveness

� Live: if it is possible to fire any 
transition of the net by progressing 
through some further firing sequence.

� Guarantees deadlock-free operation.
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� Guarantees deadlock-free operation.



Reversibility and Home State

� Reversible: if M0 is reachable from M. 
One can always get back to M0.

� M’ is said a home state if M’ is 
reachable from M.
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reachable from M.



Coverability

� A marking M is said coverable if there 
exists a marking M’ in R(M0) shuch 
that M’(p)≥M(p) for each p in the net.
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Persistence

� Persistent: if, for any two enabled 
transitions, the firing of one transition 
will not disable the other.
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Synchronic Distance

� A metric closely related to a degree 
of mutual dependence between two 
events.

� Definition of synchronic distance 
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� Definition of synchronic distance 
between two transitions t1 and t2:



Fairness

� Bounded-fair (B-fair) of two 
transitions t1 and t2: if the maximum 
number of times that either one can 
fire while the other is not firing is 
bounded.
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fire while the other is not firing is 
bounded.

� Unconditionally fair at a firing 
sequence σ: if the sequence is finite 
or every transition in the net appears 
infinitely often in σ.



Coverability Tree
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ω: infinity



Properties by Coverability Tree

� Bounded and finite iff ω does not 
appear in any node labels.

� Safe iff only 0’s and 1’s appear in 
node lables.
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node lables.

� A transition t is dead iff it does not 
appear as an arc label.

� If M is reachable from M0, then there 
exists a node labeled M’ such that M≤ 
M’.



Incidence Matrix

� For a Petri net N with n transitions 
and m places, the incidence matrix 
A=[aij] is an n x m matrix of integers.
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Reduction Rules for Analysis
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Subclasses of Petri Nets

� State machine (SM)

� Marked graph (MG)

� Free-choice (FC)
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� Extended free-choice net (EFC)

� Asymmetric choice net (AC)



An Example
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Venn Diagram
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Marked Directed Graph (G,M0)

� Arcs correspond to places, nodes to 
transitions, and tokens are placed on 
arcs.
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Siphon and Trap
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Expansion Rules
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Synthesis of Synchronic Distance 
Matrix
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An Example of Petri Nets 
Extensions: High-Level Nets 
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