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Abstract. In this paper, we study the problem of scheduling hard real-time periodic tasks. We
consider independent tasks which are characterized by a period, a hard deadline and a computation
time, but where the offsets may be chosen by the scheduling algorithm.

We first show that we can restrict the problem by considering non-equivalent offset assignments.
More precisely, we show that there are finitely many non-equivalent offset assignments and we
propose a method to reduce significantly this number and consider only the minimal number
of non-equivalent offset assignments. We then propose an optimal offset assignment rule which
considers only the non-equivalent offset assignments. However the number of combinations remains
exponential; for this reason, we also propose a nearly optimal algorithm with a more reasonable

time complexity.

Keywords: hard real-time scheduling, periodic task set, synchronous systems, asynchronous

systems, rate monotonic, deadline monotonic, deadline driven scheduler.

1. Introduction

Real-time systems are characterized by stringent timing constraints; hence, the cor-
rectness of a computation depends not only on its logical or computational results,
but also on the instant when the result is made available. The most important fea-
ture of a real-time system is its predictability (Stankovic et al., 1990), i.e., the ability
to determine whether the system is capable of meeting all its timing requirements.

Examples of such systems include the control of engines, traffic, nuclear power
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2 JOEL GOOSSENS

plants, time-critical packet communications, aircraft avionics and robotics. Typi-
cally, time-sensitive computations are modelled as tasks that need to be executed
by the system, and the timing constraint is represented by a deadline denoting the
time-instant by which the job should complete execution. We distinguish between
two kinds of deadlines: If meeting a task deadline is absolutely critical for the sys-
tem correctness, then the deadline is said to be hard; missing a hard deadline is
considered a definite failure, and leads to catastrophic consequences. If it is de-
sirable to meet a deadline but missing it can be tolerated episodically, then the

deadline is said to be soft.

In this paper, we consider the scheduling of periodic hard real-time tasks on a
uniprocessor. The set is composed of n periodic tasks 71, ..., 7,. Each periodic task
7; is characterized by the quadruple (T3, D;, C;, O;) with 0 < C; < D; and C; < T;
and O; > 0, i.e., by a period T}, a hard deadline delay D;, an execution requirement,
C;, and an offset O;, giving the instant of the first request. The requests of 7; are
separated by T; time units and occur at time O; + (k — 1)T; (k = 1,2,...). The
execution time required for each request is C; time units; C; can be considered
as the worst-case execution time for a request of 7;. The execution of the kM
request of task 7;, which occurs at time O; + (k — 1)T;, must finish before or at
time O; + (k — 1)T; + D;; the deadline failure is fatal for the system: the deadlines
are considered to be hard. All timing characteristics of the tasks in our model
of computation are assumed to be non-negative integers, i.e., they are multiples
of some elementary time interval (possibly the “CcPU tick”, the smallest indivisible
CPU time unit, but more often some conventional unit like the millisecond, or the
like). The various tasks and requests will be assumed here to be independent (no

common resource but the processor, no precedence constraints, ... ).

From a theoretical as well as from a practical point of view, it is interesting to
distinguish between three classes of periodic task sets, regarding the offsets: syn-
chronous, asynchronous and offset free task sets. Synchronous systems correspond
to the case where the offsets are fixed by the constraints of the system and they are
all the same, e.g., O; = --- = O, = 0. In asynchronous systems the offsets are fixed
by the constraints of the system, but the tasks are not started at the same time:

the offsets are different. In offset free systems there is no definite requirement about
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SCHEDULING OF OFFSET FREE SYSTEMS 3

the task start times; hence, the offsets will be chosen beforehand by the scheduling
algorithm itself. We shall consider specifically this kind of systems here.

We shall also distinguish between three classes of periodic task sets regarding the
relation between the period and the deadline of each task: the implicit deadline case,
the constrained deadline case and the arbitrary deadline case. Implicit deadline case
corresponds to the case where the deadline of each task coincides with the period
(T; = D;, i=1,...,n). In this case, each request must simply be completed before
the next request (of the same task) occurs. Constrained deadline case corresponds
to the case where the deadlines are not greater than the periods (D; < T;, i =
1,...,n). Arbitrary deadline case corresponds to the case where no constraint
exists between the deadline and the period: the deadline of a task 7; may be less
(D; < T;) or greater (D; > T;) than the period; in the latter situation, many

requests of a same task may coexist at some instants.

We shall also distinguish between two scheduling algorithm families: static and
dynamic schedulers. Static schedulers correspond to the case where the priorities
are computed beforehand and then assigned to the tasks; during the execution,
the system selects the highest priority active request. In general, we denote by
7; > 7; the fact that task 7; has a greater static priority than task 7;. The most
popular static schedulers are the rate (Liu et al., 1973) and the deadline mono-
tonic schedulers (Leung et al., 1982) which are optimal for synchronous implicit
deadline and synchronous constrained deadline systems, respectively. Dynamic
schedulers correspond to the case where the priority of each request is computed
during the execution of the system and consequently may change with time. The
most popular dynamic schedulers are the deadline driven (or earliest deadline first)
scheduler (Liu et al., 1973) and the least laxity first scheduler (Mok et al., 1978),
which are optimal for all the classes of periodic task sets considered here: syn-
chronous/asynchronous/offset free and implicit/constrained /arbitrary deadline sys-

tems.

For the various periodic task sets considered here regarding the relation between
the deadline and the period and for the various scheduling algorithms introduced

above a very general remark can be raised:
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From a schedulability point of view the synchronous case is the worst case, in the
sense that, if the system is schedulable in the synchronous case it follows that this
is also the case in all asynchronous situations.

More precisely for implicit deadline systems with a static priority assignment
Liu and Layland have shown (Liu et al., 1973) that the largest response time of 7;
occurs for its first request in the synchronous case. From (Liu et al., 1973) it is not
difficult to see that the property remains valid for constrained deadline systems.
For arbitrary deadlines with static priority assignments, Lehoczky has shown that
the largest response time for each task still occurs in the synchronous case, but not
necessarily for the first request: we have to consider the interval [0, A,) where A,
is the size of the first busy period (see (Lehoczky, 1990) for details). For dynamic
priority rules, and especially for the deadline driven scheduler, the largest response
times do not necessarily occur in the synchronous schedule, nor in the first busy
period, but from (Liu et al., 1973, Baruah et al., 1993) it is easy to show that the
synchronous case remains the worst case from a schedulability point of view.

Consequently, for static as well as dynamic schedulers, it is pessimistic to consider
only the synchronous case, since a system can be unschedulable in the synchronous
case, while being schedulable in a particular asynchronous situation. We present

two such systems, first for the static case, then for the dynamic one.

ExaMPLE: Consider the task set composed of three tasks 71,7 and 73; 7 = {C =
3,7 =D; =8}, m ={C2=6,To =Dy =12}, 3 = {C3 = 1,75 = D3 = 12}. In
the synchronous case the system is statically unschedulable, even with the optimal
priority assignments given by the rate monotonic rule: 7, > 7 > 73 (see Figure 1)
or ;1 > 73 > Ty: the first request of task 73 misses its deadline; in those figures,
' represents a task request, O a deadline and — an execution of ¢ units
between time units a and b, included; in the special case where a = b we omit b in
our representation. But with the offsets O; = O = 0 and O3 = 10, the system is
schedulable with the priority assignment 71 > 7 > 73 (see Figure 2) and with the

priority assignment 1> > 1 > 73 (see Figure 3). O

ExaMPLE: Let us consider the following system with the deadline driven scheduler
and the task set n = {Cl = 2,T1 = D1 = 6},7’2 = {02 = 5,T2 = 8,D2 = 6}
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SCHEDULING OF OFFSET FREE SYSTEMS 5

If we choose O; = O, = 0, the system is unschedulable: the first request of 7
misses its deadline (see Figure 4). However, the system is schedulable with O; =0

and O =1 (see Figure 5). O

As a consequence, if the real-time system for which the scheduling is computed
does not have definite requirements about the task start times (offsets), considering
only the synchronous case is too pessimistic. The popularity of the synchronous
schedulings seems to stem from the fact that it is generally much more easy and
quick to check schedulability of a synchronous system than for an asynchronous one,
and not from the efficiency of the synchronous schedulings. Hence an interesting
problem arises: if the offsets are not fixed by the constraints of the problem and the
task set is unschedulable in the synchronous case, is there an assignment of the off-
sets (and priorities) such that it becomes schedulable? We call this kind of system:
offset free system. We have already shown (Goossens et al., 1997) the interest of
offset free systems and the non-optimality of monotonic priority assignments (no-
tice that this non-optimality cannot be reduced to similar results for asynchronous
systems). We shall elaborate a bit further on the subject here and present two
scheduling rules to choose the offsets; the first one is optimal but its computational
cost is generally unreasonable for large size systems; hence we present also a nearly
optimal heuristic scheduling rule: the dissimilar offset assignment.

The remainder of this paper is organized as follows. In Section 2, we examine
the granularity of the offsets and conclude that we can restrict the offsets to have
the same granularity as the fixed characteristics (i.e., non-negative integers). In
Section 3, we study the notion of (non-)equivalent asynchronous systems. We con-
sider also the particular case of asynchronous systems which are equivalent to their
synchronous case in Section 3.1. In Section 3.2 we enumerate the non-equivalent
asynchronous situations. In Section 4, we propose an optimal scheduling rule for
offset free systems which considers (in the worst case) all the non-equivalent asyn-
chronous situations. More precisely, we first show that there are finitely many
non-equivalent offset assignments and then we propose a method to reduce signifi-
cantly this number and consider only the minimal number of non-equivalent offset
assignments. Since the number of assignments of the optimal algorithms remains

in general exponential we propose in Section 5 a nearly optimal algorithm with a
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more reasonable time complexity. In section 5.1 we present the evaluation of our

heuristic rule and exhibits its good performance.

2. Offset granularity

We have assumed in our model of computation that the fized characteristics of
the various tasks (i.e., T;’s, D;’s, C;’s for offset free systems) are non-negative
integers. Hence, since in this paper we consider real-time systems which have no
requirement on the offset values, the latter may have a different granularity than the
fixed characteristics and a priori it could be interesting to choose the offsets with
a finer granularity. If a system is unschedulable for all non-negative integer offset
assignments (i.e., O; € Nfor¢ =1,...,n), it is not obvious that this will still be the
case if we allow, for instance, the offsets to be multiples of % (ie, O; € {g | pE N}
fori=1,...,n). It may be noticed that allowing the offsets to be multiple of % for
an offset free system S = {r, = {T}, C;, D;} | i=1,...,n} with T;,C;,D; € N is
equivalent to allow the offsets to be non-negative integers for the offset free system
S" = {r] = {T} = 2T;,C} = 2C;,D}; = 2D;} | i = 1,...,n}, where the fixed
characteristics are multiplied by 2. Baruah and his colleagues (Baruah et al., 1990)
have shown, for a computational model somewhat different from ours, that it is not
relevant to have a finer granularity for the offsets. It may be noticed that we have
adapted their results to the present framework see (Goossens, 1999) pp. 201-206

for details.

Definition 1. Let S = {Ti ={T;,C;,D;} | i= 1,...,n} with T}, C;, D; € N be an
offset free system. An offset assignment is said to have a granularity of m iff m is

the smallest positive integer such that O; € {£ [p e N} (i=1,...,n).

THEOREM 1 ((BARUAH ET AL., 1990, GOOSSENS, 1999)) Let S = {r; = {T3, C;,
D;} | i = 1,...,n} with T;,C;,D; € N be an offset free system with arbitrary
deadlines. If S is not schedulable with the static priority assignment ™y > 19 > --- >
Tn for all non-negative integer offset assignments (i.e., O; € N fori =1,...,n),
then this is also the case for all offset assignments with a granularity of m, for all

m (m € No =N\ {0}).
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THEOREM 2 ((BARUAH ET AL., 1990, GOOSSENS, 1999)) Let S = {r; = {T}, C;,
D;} | i = 1,...,n} with T;,C;, D; € N be an offset free system with arbitrary
deadlines. If S is not schedulable with the deadline driven scheduler for all non-
negative integer offset assignments (i.e., O; € N for i =1,...,n), then this is also

the case for all offset assignments with a granularity of m, for all m (m € Ny ).

Since both the deadline driven scheduler and the least laxity first scheduler are

optimal it follows that Theorem 2 can be adapted to the least laxity first algorithm.

COROLLARY 1 Let S = {r; = {T},C;, D;} | i=1,...,n} withT;,C;,D; € N be an
offset free system. If S is not schedulable with the least lazity first algorithm for all
non-negative integer offset assignments (i.e., O; € N,i =1,...,n), then this is also

the case for all offset assignments with a granularity of m, for all m (m € Np).

Consequently, in this paper we shall restrict without loss of generality the offsets to
have the same granularity as the other task characteristics, i.e., to be non-negative

integers, and we may even assume that ged{T},C;,D; |i=1,...,n} =1.

3. Non-equivalent asynchronous systems

We shall in this section introduce the notion of (non-)equivalent asynchronous sys-
tems; this notion (and its interest) does not depend on the scheduling algorithm,
not even on the scheduling family (i.e., static or dynamic). For this reason we
shall present here results without considering a specific scheduling algorithm, but
in particular circumstances. We suppose that the schedule is finally periodic with a
period of P ef lem{T1,...,T,} time units (P is generally called the hyper-period),
that only the periodic behavior is significant regarding the feasibility of the system,
and that the periodic behavior only depends on the relative phasing of the task re-
quests, i.e., on the tuple (O; (mod T}),...,0, (mod T},)), which characterizes the
relative time shifts between the requests of the various tasks, which is true under
some non-restrictive assumptions for all the scheduling techniques we considered in
this paper (see (Goossens et al., 1997) for static schedulers and (Goossens, 1999),
pp- 207, for the deadline driven scheduler). We suppose also in the remainder of

the paper that the scheduling policy does not require to examine a granularity
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8 JOEL GOOSSENS

m > 2 (all the changes in the cPuU allocation occur at integer instants), like static

schedulers, deadline scheduling or least laxity scheduling as outlined in Section 2.

First let us define the schedule function, o (¢), which specifies which task has the
CPU at each instant. For constrained deadline systems, o(t) is an integer function
and o(t) = j, with j > 0, means that a request of task 7; is executing at time
t during (at least) one time unit, while o(f) = 0 means that the cpu is idle at
time ¢ (during at least one time unit). For arbitrary deadline systems, where many
requests of the same task may be active simultaneously, we shall assume that the
oldest active request of 7; receives the CPU, so that the same form may be used
for the schedule function; notice that for the deadline driven or the least laxity
first schedulers this condition is always satisfied; for static schedulers, it lifts in a
common way the ambiguity. If another policy is desired, we shall then extend the
notation with o(t) = (j,k) to represent the fact that at time ¢ the k*" request of 7;

is executing.

Several asynchronous systems may lead to the same periodic behavior, and can

be considered as equivalent in terms of feasibility according to the previous remark.

Definition 2. Let S and S’ be two asynchronous arbitrary deadline systems: S =
{ri ={0i,Ci,D;,T;} | i=1,...,n} and S' = {7/ = {0},C} = C;, D} = D;, T} =

T:} | i=1,...,n}. S and S are said to be eguivalent (S = S') if Ik,...,kn, A €
Z:Oi202+ki'Ti+A (1<i<n).

THEOREM 3 Let S and S' be two equivalent asynchronous arbitrary deadline sys-
tems: S = {Ti = {Oi,Ci,Di,TZ-} | 1=1,. ..,TL} and S' = {Tl’ = {Ol,CZ’ = CZ,D; =

D;,T! =T;} | i=1,.. .,n}. Then S and S' have the same periodic behavior, i.e.,
Jt1,a € NVt > t1 : 0g(t) = (i,k) & os(t +a) = (4,k + k;) with k; € Z for

i=1,...,n, (0s and os being the schedule of S and S’', respectively).

Proof: The difference between S and S’ lies in the offsets. The schedule of the
system S can be obtained from the one of S’ by adding or subtracting requests
of task 7; at times O; and by changing the time origin. These transformations
do not change the periodic behavior of the system S’ from our assumptions.
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SCHEDULING OF OFFSET FREE SYSTEMS 9
3.1.  Systems equivalent to the synchronous case

For the various kinds of periodic task sets considered here (regarding the relation
between the deadline and the period and for the various scheduling algorithms
considered), the feasibility problem of synchronous systems is a simpler problem
in terms of time complexity, especially for static scheduling algorithms applied to
constrained deadline systems. Hence, it is interesting to use feasibility tests defined
for synchronous systems if the considered asynchronous system is equivalent to the

synchronous one. Definition 2 can be simplified in this case.

Definition 3. Let S be an asynchronous and arbitrary deadline systems:
S = {Ti ={0;,C;,D;, T;} | i=1,.. .,n} is said to be equivalent to its synchronous

case if

It,k1,...,kn, € Nsuch that Vi: ¢t =O; + k; - T;. (1)

Let us determine how to check if an asynchronous system matches Equation (1).

First, let us remark that Equation (1) may reformulated as follows:
3t € Nsuch that Vi : ¢t =0; (mod Tj).
If the values T; are pairwise prime this problem is known as the Chinese Remain-

der Theorem or the Chinese Lemma, which may be found for instance in (Knuth, 1969),

pp- 249.

THEOREM 4 (CHINESE REMAINDER THEOREM) LetTh,...,T, be positive integers

which are relatively prime pairwise, i.e.,
ged(T;, Ty,) = 1 wheni # k.

Let P =T x Ty x --- x T, then the congruence system:
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t=0; (modTy)
t=0y (mod T5)

t=0, (modT,)

has exactly one solution modulo P.

Consequently, if the periods are relatively prime (pairwise), the asynchronous
system is always equivalent to the synchronous case. In the framework of this
paper, we are only interested in the existence of a solution, but its construction can
be found in (Knuth, 1969), pp. 250. In order to verify if the periods are pairwise
relatively prime, we can apply the Euclid’s algorithm to each pair (T3, T}), for j > i;
the time complexity of this procedure is O(n? xlog T™®), where T™® def max{TZ- |
1=1,... ,n}.

We shall now consider the case where the periods are not relatively prime. Knuth

gives a generalization of Theorem 4 to this case (see exercise 3, section 4.3.2 of
(Knuth, 1969)).

THEOREM 5 (GENERALIZED CHINESE REMAINDER THEOREM) LetTy,Ts,...,T,
be positive integers. Let P be the least common multiple of T1,T5,..., T, and let
a,01,0,,...,0, be any integers. There is exactly one integer t which satisfies the

conditions
alt<a+P, t=0; (modT)) 1<j<n,
provided that
0; =0; (mod ged(T;,Ty)) 1<i<j<m (2)
and there is no such integer t when the latter condition fails.

In the framework of this paper, we are only interested in the existence of a solution,

but its construction can be found in (Knuth, 1969), pp. 513.
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SCHEDULING OF OFFSET FREE SYSTEMS 11

From Theorem 5 it follows that O; = O; (mod ged(T;,T})), for j > i, is a
necessary and sufficient condition for an asynchronous system to be equivalent to
the corresponding synchronous one. Checking if an asynchronous system matches
Equation (2) can again be resolved by applying the Euclid’s algorithm to each pair

(i,7), with a maximal time complexity O(n? x log T™%).

3.2.  Enumerating the non-equivalent asynchronous situations

—H?Tpl T different classes of equivalent

We shall show in this section that there are
asynchronous situations (for the same values of Ty, T, ..., T,), based on the rela-
tionship given by Definition 2. Regarding the scheduling of offset free systems, it
is interesting to find these non-equivalent asynchronous situations in order to con-
struct an optimal offset assignment but this problem is studied in the next section.

If we fix the periods, there is still an infinite number of asynchronous systems.
However, we may first remark that without loss of generality we can restrict the

offsets as follows.

THEOREM 6 We may restrict the offsets in such a way that
0; =0,
OiE[O,Ti) 1=2,...,n.
without emptying any equivalence class of asynchronous systems.

Proof: This results immediately from our assumptions, in particular from the fact
that the periodic part of the schedule is not altered! by suppressing the request of 7;
at time O; and that the scheduling policy does not require to a examine granularity

m > 2. ]

For the very same reason, we also get:

THEOREM 7 We may restrict the offsets in such a way that they fulfill the limited
growing offset property

0,=0,
OiE[Oz'_hOi_l —}-Ti) 1=2,...,n.
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12 JOEL GOOSSENS

without emptying any equivalence class of asynchronous systems.

It follows that the number of classes of equivalent asynchronous systems is finite
and not greater than [[;' , T;. In order to identify this number ezactly, we shall

base our study on the request separation time notion.

. . . . £
For the convenience of the presentation, let us introduce the notation Rf de

O; + (k — 1)T;, which corresponds to the release time of the k*" request of 7;.

Definition 4. Let I = {r; = {C;,D;,T;} | i = 1,...,n} be an offset free task set.
For the offset assignment 0 =< O1,...,0, > and for all k > 0 such that R¥ is in
the periodic part of the system, we define the request separation for the k** request
of 7 as Ak, 0) =< Ay (k, D), ..., Apn(k, ) >, where Aj(k, O0) is the delay between
R and the first request of 7; which occurs after or at R¥, i.e., A;(k, ) = (0; — R¥)
mod T; (notice that A (k, 0) =0).

The request separation time is used here to compare asynchronous systems in

terms of their relative phasings and check their equivalence.

THEOREM 8 Let S and S' be two asynchronous arbitrary deadline systems: S =
{T’i = {OZ7CZ7D’L7T1} | i = 17"'7”} and SI = {Tzl = {0;7CZ7D’L7T’L} | i =
L...,n}; S =8 iff Ik, ks € N: A(k1,0) = A(ks, O").

Proof:

(if part). It A(k1,0) = A(ky,0"), it follows that ¥j > 1 we have (0; — R¥)
mod T; = (O} — R{**) mod T}, hence 3r; : O; = O} + r;T; + (R{* — R**) and
S = 5" from Definition 2.

(only if part). ¥ S=95', Fk1,... . kn, A€Z:0;, =0, +k;-T; + Afor1 <i<n.
Let k > 0 such that R} is in the periodic part of the system, RY = Oy + (k—1)T} =
O} — A — ki - Ty + (k — 1)T1; consequently we have O; — R¥ = O} + k; - T; + A —
Oy —A—ki-Th+ (k—1)T1) = Ol +k; - Ti + k1 - Th — (k— 1)T1 — Oy; it follows that
for k'equivk — ki (mod T1) : O; — R¥ = O} — R¥" (mod T;) and such a k' may be
chosen in such a way that R’lk' is in the periodic part of S’. The property follows.

|
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SCHEDULING OF OFFSET FREE SYSTEMS 13

Definition 5. Let 61 and 62 be two offset assignments. 61 and 62 are equivalent
(61 = 62) iff Hkl,kz €eN: 5(161,01) = &(kg,dz).

It follows from Definition 5 and Theorem 8 that equivalent offset assignments

define equivalent asynchronous systems (and inversely).

LEMMA 1 LetT' = {T,- = {C;,D;, T;} | 1= 1,...,n}. There are [];_, T; different
request separations for any request (say the k™) of 7, when the task periods are

fized and the offsets are free.

Proof: Since 0 < A;(k,0) < T, we have that the number of different request
separations is the number of different tuples < zs,23,...,2, > with 0 < z; < T;

and z; € N. [ |

LEMMA 2 Let T = {Ti = {C;, D;, T;} | = 1,...,n}. The offset assignment 0]

defines T% equivalent and different request separations for any request of 1.

Proof: The behavior of the system is periodic with a period of P (moreover,
P is the smallest such period). Hence, the successive request separations for the
requests of 7, A(k,0), A(k+1,0),. .. are also periodic, with a period T% (since the

requests of 7y are separated by Ty time units) and the interval [R¥, R¥ + P) contains

T% request separations. We have also to prove that in the interval [Rf, R¥ + P) all
the request separations for the requests of 7; are different. Suppose that this is not
true: there exists t; = R¥ + p T} and to = R¥ + poTy with R¥ <t; <t <RF+ P

such that
O;j — (RY +piTh) = 05 — (Rf + poTh)  (mod T})

which implies that p;T; and poT: are multiples of T; (j = 1,...,n), hence of
lem{Tj | j = 1,...,n}, but 0 < t, — t; < P, a contradiction with the fact that
P=lem{T; |j=1,...,n}. [

Now, we have the material to show the main result of this section, i.e., the exact
number of non-equivalent asynchronous situations.

THEOREM 9 LetT = {7-,' ={C;, D;,T;} | i=1,... ,n}. There are HLTIT different

equivalence classes of offset assignments.
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14 JOEL GOOSSENS

Proof: Let x be the number of such classes. By Lemma 1 and Lemma 2, we have

P _ 1n ) I T
that = - 7— = [[;_, T;. Hence, z = 45— [

4. Optimal scheduling rule for offset free systems

For static priority assignments we have shown (Goossens et al., 1997) in previous
works the non-optimality of the rate/deadline monotonic priority assignments and
we have shown that this (non-)optimality cannot be reduced to similar results for
asynchronous systems. It may be noticed that for asynchronous systems there is
an optimal static priority assignment which considers O(n?) distinct priority as-
signments, see (Audsley, 1991) for details. By combining it to an optimal offsets
assignment, we shall consequently get an optimal static scheduling rule for offset
free systems. The deadline driven scheduler and least laxity first schedulers re-
main of course optimal for offset free systems among the dynamic techniques since
both scheduling algorithms are optimal for asynchronous (and arbitrary deadline)

systems.

More generally, let Q be some scheduling rule for asynchronous systems (Q may
be Audsley’s optimal static technique, or the classical optimal deadline driven, least
laxity first rule, but also non-optimal rule like the rate monotonic or the deadline
monotonic ones), we shall propose in this section a Q-optimal method to choose

the offsets, in the following sense.

Definition 6. An offset assignment rule (say A) is Q-optimal for an offset free task
set family if, when a feasible offset assignment exists for a task set of the family
using the scheduling rule Q, the offset assignment given by the rule A is also feasible
for that task set with the scheduling rule Q.

The method proposed here is not dedicated to a particular scheduling rule, like
in Section 3; we shall present results without considering a scheduling algorithm
in particular, not even a specific family of scheduling algorithms. Again, we only
suppose that the schedule is finally periodic with a period of P time units, that
only the periodic behavior is significant regarding the feasibility of the system, that
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this periodic behavior only depends on the relative phasings between task requests
and that the scheduling policy does not require to examine a granularity m > 2.
A simple (regarding its principle) Q-optimal offset assignment can be defined by
searching a feasible offset assignment among all offset combinations. According to
Theorem 6 we may restrict the search to T; possible values for O; (i > 1) and a single
possibility for O (i.e., O1 = 0), consequently the total number of combinations is
M, T = O((max7_, T;)™ '), and the time complexity of the corresponding offset
assignment is O((max7_, T;)"~" x R), where R is the maximal time complexity
of a (necessary and sufficient) schedulability test for the considered scheduling rule
Q and the asynchronous systems given by the considered family (e.g., R = n?- P
for constrained deadline systems with static priority assignment, combining the
Audsley’s optimal priority assignment and the response times calculation (explained
in (Goossens, 1999), pp.99-105) in a feasibility interval (see (Goossens et al., 1997)
for instance). We shall now present a (better) method to only consider the HLTlT

non-equivalent offset assignments as described in Theorem 9.

4.1.  Two tasks

We introduce our method by considering first the non-equivalent offset assignments
for an offset free system composed of two tasks: 71 and 7».

According to Theorem 6 and without loss of generality we can choose O; = 0. Our

goal is to find % = gcd{T,T>} non-equivalent choices for O2. From Theo-
rem 6 we know that we can restrict our search among the values O, = 0,1,...,T5—1.

We may notice that, with respect to the relative phasings between the requests of
71 and those of 75, some choices for Oy can be considered as equivalent according

to Definition 2.

ExaMPLE: Consider the following characteristics for tasks 7 and 7: 71 = {Th =
4,01 = 0}, 73 = {T> = 5} (we do not specify other task characteristics since they
do not interfere in the relative phasings between task requests). We see (Figure 6)
that choosing O = 0 is equivalent to choose O3 = 1, or O3 = 2, etc.

The first occurrence of 75 is synchronous with 7 if Oy = 0; the second occurrence

of 75 then has a difference of phase equal to 1 with 7, and corresponds to choose
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O, = 1, etc. Regarding task 7y, choosing O = 0,02 = 1,02 = 2 or Oy = 3 is
equivalent; it may be noticed that this is also the case whatever the value of Oy,
since these equivalent choices of 02 generate the same relative phasings between

requests of 75 and 7. O

Two choices (say Oz = O; +v1 and Oy = O; + v2) are equivalent if they define

the same relative phasing, in the sense that:

dkq, ko ENI(Ol +U1+k1'T2) mod T} :(01 +Uz+k’2'T2) mod T}

i.e., if

dk1, ke € N : (’Ul + k1 - Tz) mod T} = (U2 + ko - Tz) mod T;. (3)

It may be noticed that this relation does not depend on O; (we shall see the
interest of this property in the more general case for the optimal offset assignment

for a set of n tasks). We shall show that Equation (3) is equivalent to

v = vy (mod ged{Ty,T»}). 4)

From Equation (3) we get that, for some ki, ko, z, k, k'

v+ ki1 =x + kT,

vo + koTh =z + K'Ty

Or vy + k1T = va + koTo + KTy — k'Ty implying v; = va (mod ged{T1,T2}). And
conversely, since gcd{T1, T2} = A\ T1+ T3 for some A1, Ay € Z, equation (4) implies
that v1 = vy + kA T1 + kAT for some k € Z so that vy + k'Ty = ve + (k' + kX2) T
(mod T1) for any k' € N, and for k' large enough &' + kX2 will be non-negative.

Since 0 # 1--- # ged{T;,T;} — 1 (mod ged{T;,T}}), it follows that the values
0,1,...,gcd{T1,T>} — 1 are non-equivalent choices for Oa.

Our Q-optimal offset assignment checks the feasibility of the asynchronous system

given by all these values.
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4.2. n tasks

We consider now the offset assignment for a set of n tasks. Our method constructs
non-equivalent asynchronous systems first by considering non-equivalent choices
for Oz (O; is already fixed, e.g., O; = 0); for each of these non-equivalent choices
for Os, the method considers next the non-equivalent choices for O3 regarding the
requests of 71 and 72 (O; and O, are already fixed), etc.

Suppose that the offsets O1,...,0;_1 are fixed and consider the non-equiva-
lent choices for O; regarding the relative phasings between the requests of 7; and
those of 7; (j < 4). The request pattern limited to the requests of the task
sub-set {7,...,7;_1} is periodic with a period of lem{Ty,...,T; 1}; from the
study of the case n = 2 it follows that there are gcd{T};,lem{T1,...,T;_1}} non-
equivalent choices for O;, e.g., all the integer values in the half-open interval
[0, gcd{T;,lem{T1,...,T;—1}}).

This method constructs [];-, ged{T;,lem{T1, ..., T; 1 }} non-equivalent asynchro-
nous systems; let us now check that all the lcm{%izlfﬂ non-equivalent asynchro-

nous systems are yielded, i.e., that

H?:l TZ
lem{T;|i =1,...,n}

H ng{Tz, lcrn{Tl, . 7Ti—1}} =

=2
THEOREM 10

., A — =11 .
chd{Tz,lcm{Tl,...,Tz—1}} lem{T)ji = 1,...,n}

=2

Proof: We show the property by induction on n. The property is obvious in the
trivial case, n = 2, since ged{Ty,T>} = % Suppose the property is true up

to n — 1 and consider the case of n. By induction hypothesis we have that

n—1
M7, ged{Ts,lem{T, ..., T; 1 }} = b=t T - ged{Ty, lem{T1, ..., Tn_1}}

and by definition of the function lcm and ged we have that

lcm{Tl, . Tn—l; Tn} = lcm{Tn, lcm{Tl, ey Tn—l}}

_ Th X lcm{Tl,...,Tn_l}
ng{Tn, ICIII{Tl, e ;Tn—l}} )
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The property follows. ]

The computation of non-equivalent offsets can be resolved by applying the Eu-
clid’s algorithm to each pair (T;,lem{T1,...,T;—1}). The maximal time complexity
of this procedure is O(n x log P). Consequently the maximal time complexity of
our Q-optimal offset assignment is O(n x log P) + O(# x R), where R is the
maximal time complexity of the exact schedulability test. Remark that the second

term dominates in general the first one.

5. Dissimilar offset assignment

We have studied in section 4 a Q-optimal offset assignment rule which considers
“all” offset assignments; more precisely, we have first shown that there are finitely
many non-equivalent offset assignments to be considered (i.e., [T}, T;) and then we

have presented a method to reduce this number and consider only the mTlT

non-
equivalent offset assignments. The simplification reduces significantly the number
of assignments that the optimal algorithm has to consider, but this number remains
exponential despite simplifications (for instance when Ty =To =---=T,, P =T}
is minimal but there are 7;"~' non-equivalent offset assignments). Moreover, this Q-
optimal algorithm is based on the feasibility test for the corresponding asynchronous
task set, and we know that the maximal time complexity of such a test is in all
generality proportional to P, which may be huge. For these reasons, it seems

interesting to define a heuristic offset assignment rule which considers a single value

for each offset.

We shall present here a rule to choose a single value for O; among the non-
equivalent possibilities. The Q-optimality of the corresponding offset assignment
is not preserved of course, but we shall see that this offset assignment schedules
a good proportion of systems which are not schedulable in the synchronous case
while the time complexity of the offset assignment is polynomial in terms of the

number of tasks and the maximal period of the system.

Remark that, before applying a sophisticated offset assignment in order to sched-

ule an offset free system, there are some preliminary points to consider.
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First, for the various classes of periodic task sets (regarding their deadlines) con-
sidered in this work, we can first check if U = "7 | % < 1 (which is sufficient for
implicit deadline systems using the deadline driven scheduler) and then check if the
system is schedulable in the synchronous case. The time complexity of feasibility
tests for synchronous systems are in all generality simpler than for asynchronous
systems. For a static scheduler in particular, except for arbitrary deadline sys-
tems, this can be checked by a pseudo-polynomial algorithm since in this case
[0,max{D;|i = 1,...,n}) is a feasibility interval (see (Leung et al., 1982) for more
details). If the system is not schedulable in the synchronous case, it may exist a
judicious choice of the offsets which schedules the system if U < 1.

We now come back to the problem of offset assignment and the presentation of
our rule. The main principle of our heuristic offset assignment rule is to choose the
offsets in order to move away from the worst case, i.e., from the synchronous case,
as much as possible. This problem is not obvious and we have investigated many
solutions. Our heuristic is closely based on the manner to estimate if a given offset
assignment is close (or not) to the synchronous case.

We estimate the proximity of an offset assignment with the synchronous case by
considering minimal length such that, for any (different) tasks T and 7', there is
an interval of that length containing a request of both T and 7' (in the periodic
part of the schedule); we shall see later that this definition can be refined, we do
not give details here. Note that this length is 0 for synchronous systems (or for
asynchronous systems which are equivalent to the synchronous case). The more
this length is large, the more the requests are dissimilar (from the synchronous
case) in the whole schedule.

We shall present here our offset assignment rule, which maximizes this length.
For convenience, let us call our rule the dissimilar offset assignment.

We introduce our rule by considering first only the requests of 7; and 7;. We have
seen in section 4 that if we consider only the requests of 7; and those of 7;, there are
gcd{T;, T;} non-equivalent choices for O; (whatever O;): 0,1,...,ged{T;,T;} — 1.
Here we are concerned by the time which separates the requests of 7; and those of

Tj-
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THEOREM 11 Let r € [O,gcd{Tz,T]}) If O; = Oj +r (07" Oj = 0; + 'f‘), the
minimum distance between a request of 7; and a request of 7; is min{r, gcd{T;, T;} —

r}.

Proof: Without loss of generality we can assume that O; = O; + r. First remark
that the offset assignment O; = O; + r induces a distance r between a request
of 7; and a request of 7;; consequently the minimum distance between a request
of 7; and a request of 7; cannot be larger than min{r,gcd{T;,T;} — r}. We now
show the property by contradiction: suppose that the property is false, i.e., the
minimum distance between a request of 7; and a request of 7; is b with 0 < b <

min{r,gcd{T;,T;} — r}. In this case we have to distinguish between two cases:
1. 3k, ks € N: OSOj+T+k1Ti—(Oj+k2Tj):b,
2. dky, ke, €N 050j+k2Tj—(Oj+’f'+k1Ti):b.

The first relation implies that b = r (mod ged{T},T};}), which leads to a contra-
diction since 0 < b < r < ged{T};, T;}.

The second relation implies that b = —r (mod ged{T;,T;}), which leads to a
contradiction since 0 < b < ged{T;,T;} —r or b+ r < gcd{T;,T;} and b+r £ 0
(mod ged{T;,T}}). [

It follows from Theorem 11 that the minimum distance between a request of

ged{T:,T;}
2

7; and a request of 7; is [ J and corresponds to the offset assignment

0; = 0; + | EHEL | (or 0; = 0; + | EAELIL ),

Suppose that § = ged{T;, T;} = max{ged{Ty, T, } | k # r} and consider the offset
assignment O; = 0 and O; = |£|. This offset assignment maximizes the minimal
distance between two requests of different tasks and consequently maximizes the
minimal length such that, for any (different) tasks 7 and 7', there is an interval
of that length containing a request of both 7 and 7’. Although our criterion is
satisfied, we shall apply the same principle for the remaining free offsets, in order
to move away from the synchronization of the remaining task requests. This leads
to Algorithm 1.

Algorithm 1 fixes the n offsets (see the while loop, line 7) of the periodic task set
by considering the values gcd{T;,T;} by decreasing order. Suppose that p,q are
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Algorithm 1 The dissimilar offset assignment
1 G < {(i,,8cd(T;,Ty)) | 1<i<j<n};
2: G <= ((i1, 1, 8¢d(Ts,, T}y)), (i J2, 8¢d(Tiy, T ), - - ),
with { (i, jr, ged(Tiy, Tj—g) | k = 1,..., "%} = G, such that r < p =>
ged(Ts,, Tj,) > ged(T5,,, Ty, );

3: {The vector G is a sorted version of the set G. In the following we shall use the

)

“dot notation” to denote the 3 fields of each entry of G, which are row, col and
gcd, respectively. }

4: assignment < n; {The remaining number of offset assignments.}

5: Mark < (false,... ,false); {n components.}

6: k< 1;

7: while assignment > 0 do

8 if ~(Markg, co) A ~(Markg, rou) then

9: Og,..row <= rand(); Og, .cot <= Og, .row + G-ged div 2;

10: assignment < assignment — 2; Markg, o = true; Markg, o1 = true;

11:  else if =(Markg, co1) then

12: Og,.col <= Og, .row + Gr-ged div 2;

13: assignment < assignment — 1; Markg, co1 = true;

14:  else if +(Markg, o) then

15: ng,mw S ng.col + G.gcd div 2;
16: assignment < assignment — 1; Markg, row = true;
17:  end if

18: k< k+1;

19: end while
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such that §' = ged{T),,T;}; we have to distinguish between three cases: O, and
O, are not already fixed, p (or r) is already fixed or p and ¢ are already fixed. In
the first case the rule fixes two more offsets: O, = 0 and O, = O, + [%IJ (see
lines 9-10). The choice O, = 0 is not optimal: what is significant is |0, — O,|.
But it is not obvious to choose the optimal value, for this reason we choose O,
randomly in order to avoid a synchronization with already fixed offsets (if any). In
the second case the rule fixes a single offset (e.g., O, = Op + [%IJ, see lines 12-13,
15-16). In the third case the algorithm does not fix any new offset and considers
the next value ged{T};,T;} (i-e., continues with the next iteration, see line 18).

Remark that this offset assignment rule does not rely on the (priority) scheduling
algorithm nor on the kind of deadline (implicit/constrained/arbitrary case) nor on
the computation times (C;’s) nor on the deadlines (D;’s). The rule only depends
on the periods of the system and tries as much as possible to move away from the
synchronous case.

We consider now the (maximal) complexity of our offset assignment rule.

THEOREM 12 The mazimal time complexity of the dissimilar offset assignment rule

is O(n? - (log T™® + logn?)) and the mazimal space complexity is O(n?).

Proof: The dissimilar offset assignment rule computes (see line 1) first the value
ged{T;,T;} for each pair (T3,Tj), this can be resolved by applying the Euclid’s
algorithm to each pair (T3,T}), j # 4, hence the time complexity of this procedure is
O(n? xlog T™4*). Then the algorithm sorts the set G, the time maximal complexity
of this procedure is O(n?logn?). Finally, the algorithm fixes the offsets with a
maximal time complexity O(n?). The dissimilar offset assignment stores O(n?)
integers (the vector G). Hence, the maximal time complexity of the dissimilar offset
assignment rule is O(n?(log T™® + logn?)) and the maximal space complexity is
O(n?). [ |

5.1. FEzxperimental results

We shall present now the evaluation of our heuristic rule. Since monotonic priority
assignments are not optimal for offset free systems (Goossens et al., 1997) and since

the Audsley’s optimal priority assignment is somewhat heavy; we shall rather study
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the effectiveness of our rule for the dynamic deadline driven scheduler which remains
optimal for offset free systems, and we consider constrained deadline offset free
systems. We present here simulation results of our heuristic applied to a large
number of task sets chosen randomly. For each task set we first check if the system
is schedulable in the synchronous situation if this is not the case, we check if the
system is schedulable in an asynchronous situation, i.e., we consider at worst the
% situations. If a feasible offset assignment exists we check if the dissimilar

offset assignment is also feasible for the same task set.

We have oriented our task set random generation in order to have “critical”
systems, where the utilization factor is large, and the interest of choosing offsets
and then our heuristic rule is relevant. It may be noticed that checking if a system
is schedulable for some offsets leads to extremely long computations since we have

% exact feasibility tests. For this reason we have strongly limited

to consider
n and the T3’s in our simulations: the number of tasks n is chosen equiprobably in
[5,13], the Ti’s in [5,30], the D;’s in [%, 7] and then the computation times (C;)
are chosen randomly in the interval [1, D;] and we only consider systems where the

utilization factor is in [0.65,1).

Figure 7 shows the proportion of systems schedulable in the synchronous case,
schedulable only in a asynchronous situation (non-equivalent to the synchronous
one) and unschedulable whatever the offsets, in function of U. From Figure 7 it
can be noticed that the interest of offset free systems again occurs in an obvious
way, since the proportion of systems schedulable in the synchronous situation de-
creases when U increases, while the proportion of systems schedulable only in an

asynchronous situation increases steadily (especially when U > 0.9).

We have also considered these characteristics in function of the number n of tasks
but it occurs that the phenomenon does not depend significantly on n (in our

limited simulations).

We have also computed for each task set schedulable in a particular asynchronous
situation (non-equivalent to the synchronous situation) the proportion of task sets
which remain schedulable with our dissimilar offset assignment and with randomly
chosen offsets: these proportions are 82% and 60% respectively. This second ex-

periment shows that:
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e Tt is very pessimistic to consider the feasibility of systems only in the syn-
chronous case. Choosing the offsets randomly already increases considerably

the number of feasible systems.

e  Our heuristic offset assignment rule, like the random one, increases considerably
the number of feasible systems in comparison with the pessimistic synchronous
case. Moreover, our rule increases nicely the number of feasible systems in
comparison with the random rule and may be considered as 82% optimal. That
leads to think that our criterion is a good measure of the proximity with the

synchronous situation and exhibits the efficiency of our rule.

We have also considered the phenomenon in function of U, and with our (limited)
simulations it occurs that the phenomenon does not depend significantly on n nor
on U; “larger” simulations (e.g., larger number of tasks, larger T’s, ... ) could be

interesting for a finer study of the phenomenon but remains for further researches.

6. Conclusion

In this paper we have studied the scheduling problem of offset free systems. We have

i, T

shown that we can restrict the problem by considering ~=

non-equivalent offset
assignments and we have proposed a method to construct these values. We have
proposed an optimal offset assignment which considers only these non-equivalent
offset assignments; however the number of combinations remains in general expo-
nential. For this reason, we have defined a rule to choose a single offset for each
task in order to try to move away from the worst case as most as possible. This
algorithm is nearly optimal and has a reasonable time complexity in terms of the

task characteristics.

Interesting questions for further research related to offset free systems include: the
study of optimal (or pseudo-optimal, i.e., heuristic) static priority assignments for
offset free systems; better statistical analysis of the actual benefit of our dissimilar
offset assignment, investigate other heuristic rules (e.g., based also on the C;’s and
the D;’s), ...
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Notes

1. In this context, by “not altered” we mean: from time to the original schedule is identical to

those of the modified system from time ¢9 + a (for some tg, a € N).
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Figure 1. The task set is unschedulable in the synchronous case.
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Figure 2. The task set is schedulable; at ¢ = 34 the situation is the same as at ¢ = 10 and the

schedule repeats.
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Figure 3. The task set is schedulable; at ¢ = 24 the situation is the same as at ¢ = 0 and the

schedule repeats.
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Figure 4. The synchronous task set is unschedulable.
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Figure 5. The asynchronous task set is schedulable; from time ¢ = 24, the schedule repeats.
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Figure 6. Choosing Oz = 0 is equivalent to choose Oz = 1,...
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Figure 7. The proportion of systems schedulable in the synchronous case, schedulable only in an

asynchronous situation and unschedulable whatever the offsets, in function of U.
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