

Elevator Speech

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded systems. The focus is on assembly of concurrent components. The key underlying principle in the project is the use of well-defined models of computation that govern the interaction between components. A major problem area being addressed is the use of heterogeneous mixtures of models of computation. A software system called Ptolemy II is being constructed in Java, and serves as the principal laboratory for experimentation.

Lee, Berkeley 2

Concurrent Composition of Subsystems, In Mainstream SW Engineering in 2007

- Component technologies
 - Objects in C++, C#, or Java
 - Wrappers as service definitions
- Concurrency
 - Threads (shared memory, semaphores, mutexes, ...)
 - Message Passing (synchronous or not, buffered, ...)
- Distributed computing
 - Distributed objects wrapped in web services, Soap, CORBA, DCOM, ...

Lee, Berkeley 3

		Scheduling Tradeoffs (Bhattacharyya, Parks, Pino, Lee)			
		CD to DAT sample rate conversion			
		$2:1 \qquad 2:3 \qquad 8:7$ $147 \qquad 147 \qquad 98 \qquad 28$	5:7		
г	C alt a		Onde	Dete	
	Sche	duling strategy	Code	Data	
	Minir	num buffer schedule, no looping	13735	32	
	Minimum buffer schedule, with looping			32	
	Worst minimum code size schedule			1021	
	Best minimum code size schedule			264	
5	Source	: Shuvra Bhattacharyya	·	·	
				Lee, Berk	celey 10

Higher-Order Components Realizing Recursion in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial evaluation strategy on higher-order components.

Heterochronous Dataflow (HDF) (Girault, Lee, and Lee, 1997)

- An interconnection of actors.
- An actor is either SDF or HDF.

Related to "parameterized dataflow" of Bhattacharya and Bhattacharyya (2001).

- If HDF, then the actor has:
 - a state machine
 - a refinement for each state
 - where the refinement is an SDF or HDF actor
- Operational semantics:
 - with the state of each state machine fixed, graph is SDF
 - in the initial state, execute one complete SDF iteration
 - evaluate guards and allow state transitions
 - in the new state, execute one complete SDF iteration
- HDF is decidable if state machines are finite
 - but complexity can be high

Lee, Berkeley 21

