
1

EECS 249 Guest Lecture

Berkeley, CA
September 20, 2007

Overview of the Ptolemy Project

Edward A. Lee
Robert S. Pepper Distinguished Professor and

Chair of EECS, UC Berkeley

Lee, Berkeley 2

Elevator Speech

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy II is being constructed in Java, and
serves as the principal laboratory for
experimentation.

2

Lee, Berkeley 3

Concurrent Composition of Subsystems,
In Mainstream SW Engineering in 2007

Component technologies
Objects in C++, C#, or Java
Wrappers as service definitions

Concurrency
Threads (shared memory, semaphores, mutexes, …)
Message Passing (synchronous or not, buffered, …)

Distributed computing
Distributed objects wrapped in web services, Soap,
CORBA, DCOM, …

Lee, Berkeley 4

Our Approach:
Actor-Oriented Models of Computation

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Traditional component interactions:

3

Lee, Berkeley 5

Software Legacy of the Project

Gabriel (1986-1991)
Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators

Ptolemy Classic (1990-1997)
Written in C++
Abstract Actor Semantics
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components

Ptolemy II (1996-2022)
Written in Java
Behavioral polymorphism
Multithreaded
Network integrated and distributed
Modal models
Sophisticated type system
CT, HDF, CI, GR, etc.

Each of these served
us, first-and-foremost,
as a laboratory for
investigating design.

Focus has always
been on system
modeling and
embedded software.

Lee, Berkeley 6

Where it started: SDF: Synchronous Dataflow
and the Balance Equations (1985-86)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=Γ

102
120

011

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

q
q
q

q
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==Γ

0
0
0

0
r

q

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix

4

Lee, Berkeley 7

Gabriel and Ptolemy Classic Leveraged
SDF to Generate Parallel Code
SDF model, parallel schedule, and synthesized assembly code (1990)

It is an interesting (and rich)
research problem to minimize
interlocks in complex multirate
applications.

Lee, Berkeley 8

Many Scheduling and Optimization
Problems (and Some Solutions) Resulted

Optimization criteria that might be applied:
Minimize buffer sizes.
Minimize the number of actor activations.
Minimize the size of the representation
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,
Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, 1996, for a summary of the single
processor optimization problems.

5

Lee, Berkeley 9

Minimum Buffer Schedule

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E
A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C
D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A
B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A
F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C
D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A
B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A
B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F
F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C
A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A
B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F
F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

Lee, Berkeley 10

Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino, Lee)

264170Best minimum code size schedule

1021170Worst minimum code size schedule

329400 Minimum buffer schedule, with looping

3213735 Minimum buffer schedule, no looping

DataCodeScheduling strategy

Source: Shuvra Bhattacharyya

6

Lee, Berkeley 11

Gabriel and Ptolemy Classic Provided Co-
Simulation of Hardware and Generated Software

An SDF model,
a “Thor” model
of a 2-DSP
architecture, a
“logic analyzer”
trace of the
execution of the
architecture,
and two DSP
code debugger
windows, one
for each
processor
(1990).

Lee, Berkeley 12

Example of Model-Based Design:
ADPCM Speech Coding

Model of a
speech
coder
generated
to DSP
assembly
code and
executed
using a
DSP
debugger
interface
with
host/DSP
interaction
(1993).

7

Lee, Berkeley 13

Example: Heterogeneous Architecture
with DSP and Sun Workstation (1995)

DSP card in a Sun Sparc
Workstation runs a portion of a
Ptolemy model; the other portion
runs on the Sun.

Sparc
C

DSP Card
M56K

Lee, Berkeley 14

Gradually Increasing Emphasis on Modeling: Ptolemy
Classic Example Showing Higher-Order Components
(adaptive nulling in an antenna array, 1995)

Ptolemy application developed by
Uwe Trautwein, Technical
University of Ilmenau, Germany

streams

hierarchical
components

higher-order
components

8

Lee, Berkeley 15

Higher-Order Components Realizing
Recursion in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

recursive reference

Lee, Berkeley 16

Extension of SDF: Multidimensional SSDF
(1993)

Production and
consumption of N-
dimensional arrays of data:

Balance equations and
scheduling policies
generalize.
Much more data
parallelism is exposed.

(40, 48)

(8, 8)

Similar (but dynamic)
multidimensional streams have been
implemented in Lucid.

9

Lee, Berkeley 17

More interesting Example

Two dimensional
FFT constructed
out of one-
dimensional
actors.

Lee, Berkeley 18

MDSSDF Structure Exposes
Fine-Grain Data Parallelism

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)

Transpose Parameter: (3,1,2)T

A
(L,M)

B
(M,N)

(L,1,1)

(1,1,1)

Repeat

T

(1,M,1)

(1,1,1)
(L,1,N)

(L,N,1)

Transpose Parameter: (1,3,2)

From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

L

M

N

M

N

L

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

However, such programs
are extremely hard to
write (and to read).

10

Lee, Berkeley 19

Another Extension: Cyclostatic Dataflow
(CSDF) Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular production/consumption pattern.
Balance equations become:

fire B {
…
consume M
…

}

fire A {
…
produce
…

}

channel

),(;
1

0
mod

1

0
mod QPlcmRmqnq

R

i
QiB

R

i
PiA == ∑∑

−

=

−

=

iN
10 ,, −Pnn K 10 ,, −Qmm K

cyclic production pattern

Lee, Berkeley 20

Further Extension: Heterochronous
Dataflow (HDF) Girault, Lee, & Lee, 1997)

An actor consists of a state machine and
refinements to the states that define behavior.

11

Lee, Berkeley 21

Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

An interconnection of actors.
An actor is either SDF or HDF.
If HDF, then the actor has:

a state machine
a refinement for each state
where the refinement is an SDF or HDF actor

Operational semantics:
with the state of each state machine fixed, graph is SDF
in the initial state, execute one complete SDF iteration
evaluate guards and allow state transitions
in the new state, execute one complete SDF iteration

HDF is decidable if state machines are finite
but complexity can be high

Related to “parameterized
dataflow” of Bhattacharya
and Bhattacharyya (2001).

Lee, Berkeley 22

Ptolemy II
Ptolemy II:

Our current framework for
experimentation with actor-oriented
design, concurrent semantics, visual
syntaxes, and hierarchical,
heterogeneous design.

Ptolemy II is free software, open-
source software

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system

12

Lee, Berkeley 23

Ptolemy II Framework Supports Diverse
Experiments with Models of Computation

Director from a library
defines component
interaction semantics

Large, behaviorally-
polymorphic component
library.

Visual editor supporting an abstract syntax

Type system
for transported
data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 24

Separable Tool Architecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics

13

Lee, Berkeley 25

The Basic Abstract Syntax for
Composition

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

• Entities
• Attributes on entities (parameters)
• Ports in entities
• Links between ports
• Width on links (channels)
• Hierarchy

Concrete syntaxes:
• XML
• Visual pictures
• Actor languages (Cal, StreamIT, …)

Lee, Berkeley 26

Meta Model: Kernel Classes
Supporting the Abstract Syntax

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1
1..1

These get subclassed for specific purposes.

14

Lee, Berkeley 27

Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics

Lee, Berkeley 28

MoML
XML Schema for this Abstract Syntax

Ptolemy II designs are represented in XML:

...
<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">

<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">

...
</port>
...

</entity>
...
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>
...

15

Lee, Berkeley 29

Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics

Lee, Berkeley 30

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that we have
implemented:

• dataflow (several variants)
• process networks
• distributed process networks
• Click (push/pull)
• continuous-time
• CSP (rendezvous)
• discrete events
• distributed discrete events
• synchronous/reactive
• time-driven (several variants)
• …

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

execution control data transport

init()
fire()

16

Lee, Berkeley 31

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Lee, Berkeley 32

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

E.g., in DE: Post tags on the event
queue corresponding to any
initial events the actor wants to
produce.

17

Lee, Berkeley 33

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Iterate
If (prefire()) {

fire();
postfire();

}

Only the postfire() method can
change the state of the actor.

Lee, Berkeley 34

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

18

Lee, Berkeley 35

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
private Object state;
boolean prefire() {
if (trigger is known) { return true; }

}
void fire() {
if (trigger is present) {
send state to output;

} else {
assert output is absent;

}
}
void postfire() {
if (trigger is present) {
state = value read from data input;

}
}

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

trigger
input
port

data input port

Lee, Berkeley 36

Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics

19

Lee, Berkeley 37

Concrete Semantics Example 1:
Discrete Event (DE) Model of Computation
(MoC)

DE Director implements
timed semantics using an
event queue

Event source

Time line

Signal

put() method inserts a token
into the event queue.

In DE, actors send time-
stamped events to one
another, and events are
processed in chronological
order.

Lee, Berkeley 38

Example 2: Kahn Process Networks (PN)
Model of Computation (MoC)

actor == thread

signal == stream

reads block

writes don’t
Kahn, MacQueen, 1977

In PN, every
actor runs in
a thread,
with blocking
reads of
input ports
and non-
blocking
writes to
outputs.

20

Lee, Berkeley 39

Example 3: Synchronous Dataflow (SDF)

In SDF, actors “fire,” and in each firing, consume a
fixed number of tokens from the input streams, and
produce a fixed number of tokens on the output
streams.

SDF is a special case of PN
where deadlock and
boundedness are decidable. It
is well suited to static
scheduling and code
generation. It can also be
automatically parallelized.

Lee, Berkeley 40

Example 4: Synchronous/Reactive (SR)

At each tick of a global “clock,” every
signal has a value or is absent.

Like SDF, SR is decidable and suitable for
code generation. It is harder to parallelize
than SDF, however.

SR languages: Esterel, SyncCharts, Lustre,
SCADE, Signal.

21

Lee, Berkeley 41

Example 5: Rendezvous

actor == thread

writes block

CSP (Hoare), SCCS (Milner),
Reo (Arbab)

In Rendezvous, every
actor runs in a thread,
with blocking reads of
input ports and blocking
writes to outputs. Every
communication is a
(possibly multi-way)
rendezvous.

reads block

Lee, Berkeley 42

Example 6: Continuous Time (CT)

Director includes an ODE solver.

In CT, actors operate on
continuous-time and/or
discrete-event signals. An
ODE solver governs the
execution.

Signal is a
continuous-time
function.

22

Lee, Berkeley 43

SR

Ptolemy II Software Architecture
Built for Extensibility

Ptolemy II packages
have carefully
constructed
dependencies and
interfaces

PN

CSP

CT

DE FSM

SD
F

Kernel

Data

Actor Math

Graph

Lee, Berkeley 44

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
Continuous – continuous-time modeling with fixed-point semantics
CT – continuous-time modeling
DDF – Dynamic dataflow
DE – discrete-event systems
DDE – distributed discrete events
DPN – distributed process networks
FSM – finite state machines
DT – discrete time (cycle driven)
Giotto – synchronous periodic
GR – 3-D graphics
PN – process networks
Rendezvous – extension of CSP
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of
these are
actor
oriented.

23

Lee, Berkeley 45

Scalability 101:
Hierarchy - Composite Components

toplevel CompositeEntity
transparent or opaque
CompositeEntity

Entity

Relation
dangling

Port

Port
opaque Port

Lee, Berkeley 46

Ptolemy II Hierarchy Supports Heterogeneity

This requires a composable abstract semantics.

Concurrent actors governed by one model of
computation (e.g., Discrete Events).

Modal behavior given in another MoC.

Detailed dynamics given
in a third MoC (e.g.

Continuous Time)

24

Lee, Berkeley 47

Hierarchical Heterogeneity (HH)
Supports Hybrid Systems

Combinations of synchronous/reactive,
discrete-event, and continuous-time
semantics offer a powerful way to represent
and execute hybrid systems.

HyVisual is a
specialization of the
meta framework
Ptolemy II.

Lee, Berkeley 48

In All Cases: Composition Semantics

Each actor is a function:

Composition in three forms:
Cascade connections
Parallel connections
Feedback connections

All three are function composition.
The nontrivial part of this is feedback, but
we know how to handle that.

The concurrency model is
called the “model of
computation” (MoC).

The model of computation
determines the formal
properties of the set T:

Useful MoCs:
• Process Networks
• Synchronous/Reactive
• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Continuous Time
• …

f : (T → B∗) m → (T → B∗) n

25

Lee, Berkeley 49

Semantics
Example: DE

TNF →×ℜ:
A signal is a partial function:

F

Real numbers
(approximated
by doubles)

Data type
(set of
values)

Natural numbers (allowing
for simultaneous events in
a signal)

signal in signal out

Note: A
signal is
not a
single
event but
all the
events
that flow
on a path.

Lee, Berkeley 50

Semantics Clears Up Subtleties:
E.g. Simultaneous Events

By default, an actor produces events with the same time as the input
event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event
from the PoissonClock. Events with identical time stamps are also ordered,
and reactions to such events follow data precedence order.

26

Lee, Berkeley 51

Semantics Clears Up Subtleties:
E.g. Feedback

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

Lee, Berkeley 52

Discrete-Event Semantics

τ2/1),(=yxd
Cantor metric:

where τ is the earliest time where x and y differ.

τ

x

y

27

Lee, Berkeley 53

Causality

x

x′

y

y′

),(),(xxdyyd ′≤′
Causal:

),(),(xxdyyd ′<′
Strictly causal:

,1<∃δ
Delta causal:

),(),(xxdyyd ′≤′ δ

A delta-causal component is a “contraction map.”

Lee, Berkeley 54

Semantics of Composition

x yFxxF
yx
=
⇒=

)(

Banach fixed point theorem:
• Contraction map has a unique fixed point
• Execution procedure for finding that fixed point
• Successive approximations to the fixed point

If the components
are deterministic,
the composition is
deterministic.

28

Lee, Berkeley 55

Zeno Systems

Theorem: If every directed cycle contains a delta-causal
component, then the system is non-Zeno.

Lee, Berkeley 56

Current Research in the Ptolemy Project

Precision-timed (PRET) machines: This effort reintroduces timing into the core abstractions of
computing, beginning with instruction set architectures, using configurable hardware as an
experimental platform.
Real-time software: Models of computation with time and concurrency, metaprogramming
techniques, code generation and optimization, domain-specific languages, schedulability
analysis, programming of sensor networks.
Distributed computing: Models of computation based on distributed discrete events,
backtracking techniques, lifecycle management, unreliable networks, modeling of sensor
networks.
Understandable concurrency: This effort focuses on models of concurrency in software that
are more understandable and analyzable than the prevailing abstractions based on threads.
Systems of systems: This effort focuses on modeling and design of large scale systems, those
that include networking, database, grid computing, and information subsystems. See for
example the Kepler project, which targets scientific workflows.
Abstract semantics: Domain polymorphism, behavioral type systems, meta-modeling of
semantics, comparative models of computation.
Hybrid systems: Blended continuous and discrete dynamics, models of time, operational
semantics, language design.

29

Lee, Berkeley 57

Install it!

Latest release:
http://ptolemy.org
Follow Ptolemy II, downloads

CVS tree:
http://chess.eecs.berkeley.edu/ptexternal/

