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Elevator Speech

The Ptolemy project studies modeling, simulation, 
and design of concurrent, real-time, embedded 
systems. The focus is on assembly of concurrent 
components. The key underlying principle in the 
project is the use of well-defined models of 
computation that govern the interaction between 
components. A major problem area being 
addressed is the use of heterogeneous mixtures of 
models of computation. A software system called 
Ptolemy II is being constructed in Java, and 
serves as the principal laboratory for 
experimentation.
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Concurrent Composition of Subsystems,
In Mainstream SW Engineering in 2007

Component technologies
Objects in C++, C#, or Java
Wrappers as service definitions

Concurrency
Threads (shared memory, semaphores, mutexes, …)
Message Passing (synchronous or not, buffered, …)

Distributed computing
Distributed objects wrapped in web services, Soap, 
CORBA, DCOM, …
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Our Approach: 
Actor-Oriented Models of Computation

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

Traditional component interactions:
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Software Legacy of the Project

Gabriel (1986-1991)
Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams 
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators

Ptolemy Classic (1990-1997)
Written in C++
Abstract Actor Semantics
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components

Ptolemy II (1996-2022)
Written in Java
Behavioral polymorphism
Multithreaded
Network integrated and distributed
Modal models
Sophisticated type system
CT, HDF, CI, GR, etc.

Each of these served 
us, first-and-foremost, 
as a laboratory for 
investigating design.

Focus has always 
been on system 
modeling and 
embedded software.
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Where it started: SDF: Synchronous Dataflow 
and the Balance Equations (1985-86)
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Gabriel and Ptolemy Classic Leveraged 
SDF to Generate Parallel Code
SDF model, parallel schedule, and synthesized assembly code (1990)

It is an interesting (and rich) 
research problem to minimize 
interlocks in complex multirate
applications.
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Many Scheduling and Optimization 
Problems (and Some Solutions) Resulted

Optimization criteria that might be applied:
Minimize buffer sizes.
Minimize the number of actor activations.
Minimize the size of the representation 
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, 
Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, 1996, for a summary of the single 
processor optimization problems.
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Minimum Buffer Schedule

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E
A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C
D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A
B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A
F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C
D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A
B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A
B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F
F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C
A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A
B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F
F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

Lee, Berkeley 10

Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino, Lee)

264170Best minimum code size schedule

1021170Worst minimum code size schedule 

329400 Minimum buffer schedule, with looping

3213735 Minimum buffer schedule, no looping

DataCodeScheduling strategy

Source: Shuvra Bhattacharyya
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Gabriel and Ptolemy Classic Provided Co-
Simulation of Hardware and Generated Software

An SDF model, 
a “Thor” model 
of a 2-DSP 
architecture, a 
“logic analyzer”
trace of the 
execution of the 
architecture, 
and two DSP 
code debugger 
windows, one 
for each 
processor 
(1990).
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Example of Model-Based Design: 
ADPCM Speech Coding

Model of a 
speech 
coder 
generated 
to DSP 
assembly 
code and 
executed 
using a 
DSP 
debugger 
interface 
with 
host/DSP 
interaction 
(1993).
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Example: Heterogeneous Architecture 
with DSP and Sun Workstation (1995)

DSP card in a Sun Sparc
Workstation runs a portion of a 
Ptolemy model; the other portion 
runs on the Sun.

Sparc
C

DSP Card
M56K
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Gradually Increasing Emphasis on Modeling: Ptolemy 
Classic Example Showing Higher-Order Components
(adaptive nulling in an antenna array, 1995)

Ptolemy application developed by 
Uwe Trautwein, Technical 
University of Ilmenau, Germany

streams

hierarchical 
components

higher-order 
components
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Higher-Order Components Realizing 
Recursion in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial 
evaluation strategy on higher-order components.

recursive reference
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Extension of SDF: Multidimensional SSDF
(1993)

Production and 
consumption of N-
dimensional arrays of data:

Balance equations and
scheduling policies
generalize.
Much more data 
parallelism is exposed.

(40, 48)

(8, 8)

Similar (but dynamic) 
multidimensional streams have been 
implemented in Lucid.
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More interesting Example

Two dimensional 
FFT constructed 
out of one-
dimensional 
actors.
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MDSSDF Structure Exposes
Fine-Grain Data Parallelism

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)

Transpose Parameter: (3,1,2)T

A
(L,M)

B
(M,N)

(L,1,1)

(1,1,1)

Repeat

T

(1,M,1)

(1,1,1)
(L,1,N)

(L,N,1)

Transpose Parameter: (1,3,2)

From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

L

M

N

M

N

L

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

However, such programs 
are extremely hard to 
write (and to read).
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Another Extension: Cyclostatic Dataflow 
(CSDF) Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular production/consumption pattern.
Balance equations become:

fire B {
…
consume M
…

}

fire A {
…
produce 
…

}

channel

),(;
1

0
mod

1

0
mod QPlcmRmqnq

R

i
QiB

R

i
PiA == ∑∑

−

=

−

=

iN
10 ,, −Pnn K 10 ,, −Qmm K

cyclic production pattern
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Further Extension: Heterochronous
Dataflow (HDF) Girault, Lee, & Lee, 1997)

An actor consists of a state machine and 
refinements to the states that define behavior.
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Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

An interconnection of actors.
An actor is either SDF or HDF.
If HDF, then the actor has:

a state machine
a refinement for each state
where the refinement is an SDF or HDF actor

Operational semantics:
with the state of each state machine fixed, graph is SDF
in the initial state, execute one complete SDF iteration
evaluate guards and allow state transitions
in the new state, execute one complete SDF iteration

HDF is decidable if state machines are finite
but complexity can be high

Related to “parameterized 
dataflow” of Bhattacharya 
and Bhattacharyya (2001).
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Ptolemy II
Ptolemy II:

Our current framework for 
experimentation with actor-oriented 
design, concurrent semantics, visual 
syntaxes, and hierarchical, 
heterogeneous design.

Ptolemy II is free software, open-
source software

http://ptolemy.eecs.berkeley.edu

Hierarchical component

modal model

dataflow controller

example Ptolemy II model: hybrid control system
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Ptolemy II Framework Supports Diverse 
Experiments with Models of Computation

Director from a library 
defines component 
interaction semantics

Large, behaviorally-
polymorphic component 
library.

Visual editor supporting an abstract syntax

Type system 
for transported 
data

Concurrency management supporting 
dynamic model structure.
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Separable Tool Architecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics
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The Basic Abstract Syntax for
Composition

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

• Entities
• Attributes on entities (parameters)
• Ports in entities
• Links between ports
• Width on links (channels)
• Hierarchy

Concrete syntaxes:
• XML
• Visual pictures
• Actor languages (Cal, StreamIT, …)
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Meta Model: Kernel Classes
Supporting the Abstract Syntax

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1
1..1

These get subclassed for specific purposes.
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Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics
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MoML
XML Schema for this Abstract Syntax

Ptolemy II designs are represented in XML:

...
<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">

<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">

...
</port>
...

</entity>
...
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>
...
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Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics
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Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of 
Computation that we have 
implemented:

• dataflow (several variants)
• process networks
• distributed process networks
• Click (push/pull)
• continuous-time
• CSP (rendezvous)
• discrete events
• distributed discrete events
• synchronous/reactive
• time-driven (several variants)
• …

  Actor

  IOPort
  IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

  Receiver
(inside port)

execution control data transport

init()
fire()
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Lee, Berkeley 32

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

E.g., in DE: Post tags on the event 
queue corresponding to any 
initial events the actor wants to 
produce.
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Iterate
If (prefire()) {

fire();
postfire();

}

Only the postfire() method can 
change the state of the actor.

Lee, Berkeley 34

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization
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Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
private Object state;
boolean prefire() {
if (trigger is known) { return true; }

}
void fire() {
if (trigger is present) {
send state to output;

} else {
assert output is absent;

}
}
void postfire() {
if (trigger is present) {
state = value read from data input;

}
}

Can the 
actor fire?

React to 
trigger 
input.

Read the 
data input 
and update 
the state.

trigger 
input 
port

data input port
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Separable Tool Archictecture

Abstract Syntax
Concrete Syntax
Abstract Semantics
Concrete Semantics
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Concrete Semantics Example 1: 
Discrete Event (DE) Model of Computation 
(MoC)

DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Signal

put() method inserts a token 
into the event queue.

In DE, actors send time-
stamped events to one 
another, and events are 
processed in chronological 
order.
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Example 2: Kahn Process Networks (PN) 
Model of Computation (MoC)

actor == thread

signal == stream

reads block

writes don’t
Kahn, MacQueen, 1977

In PN, every 
actor runs in 
a thread, 
with blocking 
reads of 
input ports 
and non-
blocking 
writes to 
outputs.



20

Lee, Berkeley 39

Example 3: Synchronous Dataflow (SDF)

In SDF, actors “fire,” and in each firing, consume a 
fixed number of tokens from the input streams, and 
produce a fixed number of tokens on the output 
streams.

SDF is a special case of PN 
where deadlock and 
boundedness are decidable. It 
is well suited to static 
scheduling and code 
generation. It can also be 
automatically parallelized.
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Example 4: Synchronous/Reactive (SR)

At each tick of a global “clock,” every
signal has a value or is absent.

Like SDF, SR is decidable and suitable for 
code generation. It is harder to parallelize 
than SDF, however.

SR languages: Esterel, SyncCharts, Lustre, 
SCADE, Signal.



21

Lee, Berkeley 41

Example 5: Rendezvous

actor == thread

writes block

CSP (Hoare), SCCS (Milner), 
Reo (Arbab)

In Rendezvous, every 
actor runs in a thread, 
with blocking reads of 
input ports and blocking 
writes to outputs. Every 
communication is a 
(possibly multi-way) 
rendezvous.

reads block
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Example 6: Continuous Time (CT)

Director includes an ODE solver.

In CT, actors operate on 
continuous-time and/or 
discrete-event signals. An 
ODE solver governs the 
execution.

Signal is a 
continuous-time 
function.
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SR

Ptolemy II Software Architecture
Built for Extensibility

Ptolemy II packages 
have carefully 
constructed 
dependencies and 
interfaces

PN

CSP

CT

DE FSM

SD
F

Kernel

Data

Actor Math

Graph
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Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
Continuous – continuous-time modeling with fixed-point semantics
CT – continuous-time modeling
DDF – Dynamic dataflow
DE – discrete-event systems
DDE – distributed discrete events
DPN – distributed process networks
FSM – finite state machines
DT – discrete time (cycle driven) 
Giotto – synchronous periodic
GR – 3-D graphics
PN – process networks
Rendezvous – extension of CSP
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of 
these are 
actor 
oriented.
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Scalability 101:
Hierarchy - Composite Components

toplevel CompositeEntity
transparent or opaque
CompositeEntity

Entity

Relation
dangling

Port

Port
opaque Port
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Ptolemy II Hierarchy Supports Heterogeneity

This requires a composable abstract semantics.

Concurrent actors governed by one model of 
computation (e.g., Discrete Events).

Modal behavior given in another MoC.

Detailed dynamics given 
in a third MoC (e.g. 

Continuous Time)
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Hierarchical Heterogeneity (HH) 
Supports Hybrid Systems

Combinations of synchronous/reactive, 
discrete-event, and continuous-time 
semantics offer a powerful way to represent 
and execute hybrid systems. 

HyVisual is a 
specialization of the 
meta framework 
Ptolemy II.

Lee, Berkeley 48

In All Cases: Composition Semantics

Each actor is a function:

Composition in three forms:
Cascade connections
Parallel connections
Feedback connections

All three are function composition.
The nontrivial part of this is feedback, but 
we know how to handle that.

The concurrency model is 
called the “model of 
computation” (MoC).

The model of computation 
determines the formal 
properties of the set T:

Useful MoCs:
• Process Networks
• Synchronous/Reactive
• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Continuous Time
• …

f : (T → B∗) m → (T → B∗) n
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Semantics
Example: DE

TNF →×ℜ:
A signal is a partial function:

F

Real numbers 
(approximated 
by doubles)

Data type 
(set of 
values)

Natural numbers (allowing 
for simultaneous events in 
a signal)

signal in signal out

Note: A 
signal is 
not a 
single 
event but 
all the 
events 
that flow 
on a path.
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Semantics Clears Up Subtleties: 
E.g. Simultaneous Events

By default, an actor produces events with the same time as the input 
event. But in this example, we expect (and need) for the BooleanSwitch to 
“see” the output of the Bernoulli in the same “firing” where it sees the event 
from the PoissonClock. Events with identical time stamps are also ordered, 
and reactions to such events follow data precedence order.
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Semantics Clears Up Subtleties: 
E.g. Feedback

Data precedence analysis has to take into account the non-strictness of 
this actor (that an output can be produced despite the lack of an input).
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Discrete-Event Semantics

τ2/1),( =yxd
Cantor metric:

where τ is the earliest time where x and y differ.

τ

x

y
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Causality

x

x′

y

y′

),(),( xxdyyd ′≤′
Causal:

),(),( xxdyyd ′<′
Strictly causal:

,1<∃δ
Delta causal:

),(),( xxdyyd ′≤′ δ

A delta-causal component is a “contraction map.”
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Semantics of Composition

x yFxxF
yx
=
⇒=

)(

Banach fixed point theorem:
• Contraction map has a unique fixed point
• Execution procedure for finding that fixed point
• Successive approximations to the fixed point

If the components 
are deterministic, 
the composition is 
deterministic.
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Zeno Systems

Theorem: If every directed cycle contains a delta-causal 
component, then the system is non-Zeno.
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Current Research in the Ptolemy Project

Precision-timed (PRET) machines: This effort reintroduces timing into the core abstractions of 
computing, beginning with instruction set architectures, using configurable hardware as an 
experimental platform.
Real-time software: Models of computation with time and concurrency, metaprogramming
techniques, code generation and optimization, domain-specific languages, schedulability
analysis, programming of sensor networks.
Distributed computing: Models of computation based on distributed discrete events, 
backtracking techniques, lifecycle management, unreliable networks, modeling of sensor 
networks.
Understandable concurrency: This effort focuses on models of concurrency in software that 
are more understandable and analyzable than the prevailing abstractions based on threads.
Systems of systems: This effort focuses on modeling and design of large scale systems, those 
that include networking, database, grid computing, and information subsystems. See for 
example the Kepler project, which targets scientific workflows.
Abstract semantics: Domain polymorphism, behavioral type systems, meta-modeling of 
semantics, comparative models of computation.
Hybrid systems: Blended continuous and discrete dynamics, models of time, operational 
semantics, language design.
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Install it!

Latest release:
http://ptolemy.org
Follow Ptolemy II, downloads

CVS tree:
http://chess.eecs.berkeley.edu/ptexternal/


