Overview of the Ptolemy Project

Edward A. Lee

Robert S. Pepper Distinguished Professor and
Chair of EECS, UC Berkeley

EECS 249 Guest Lecture

Berkeley, CA
September 20, 2007

Elevator Speech

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy Il is being constructed in Java, and
serves as the principal laboratory for
experimentation.

Lee, Berkeley 2

ol

| Concurrent Composition of Subsystems,
| In Mainstream SW Engineering in 2007

o Component technologies
Objects in C++, C#, or Java
Wrappers as service definitions

o Concurrency
Threads (shared memory, semaphores, mutexes, ...)
Message Passing (synchronous or not, buffered, ...)

o Distributed computing

Distributed objects wrapped in web services, Soap,
CORBA, DCOM, ...

Lee, Berkeley 3

&= (4| our Approach:
¢ | Actor-Oriented Models of Computation

Traditional component interactions:

class name
data What flow_s thfough
an object is
r methods 1 sequential control
call return
Actor oriented:
actor name
data (state) What flows through

- parameters ‘ an object is

streams of data

ports

Input data Output data Lee, Berkeley 4

°?

o Gabriel (1986-1991)

Written in Lisp
Aimed at signal processing

Synchronous dataflow (SDF) block diagrams

Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators

o Ptolemy Classic (1990-1997)

Written in C++

Abstract Actor Semantics
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components

o Ptolemy Il (1996-2022)

Written in Java

Behavioral polymorphism
Multithreaded

Network integrated and distributed
Modal models

Sophisticated type system

CT, HDF, CI, GR, etc.

Software Legacy of the Project

Each of these served
us, first-and-foremost,
as a laboratory for
investigating design.

Focus has always
been on system
modeling and
embedded software.

Lee, Berkeley 5

Where it started: SDF: Synchronous Dataflow
and the Balance Equations (1985-86)

SDF Director

K. 1

| »]_ﬁ_'

Ffz’—L_.
o| |3

E, f

production/consumption matrix

/ Connector 1

1 -1 0

r=0 2 -1 %
2 0 -1 97|%
\ 0
Actor 1

firing vector

balance equations

Lee, Berkeley 6

o3

Gabriel and Ptolemy Classic Leveraged
SDF to Generate Parallel Code

SDF model, parallel schedule, and synthesized assembly code (1990)

odeblock(std) £
: initialize address registers for coef and
Scheduling example from Gil Sin's dissertation _‘*fl!r‘fgl‘:“;rf;:: #$addr(coef)+$val{coeflen)-1.r3
Figure 4-1 (modiified slightly) mOVEe sref(delaylineStart).rs

: delaylLine

move wsval{stepSize) . x1

mowe Sref(erron) . x0

mpyr x0.x1.a

move a.x0

move x:(r3}.b yr{ra)+.yo

3

codeblock(loop) £

do 1{ loopVal) . Slabel {endloop)
macr =

move b

move =
$label{endloop)
3

codeblock{noloop}

macr x0,yo, b

move b.x:{r3}

morve x:{ri).b y:{rs)+ . yo
1]

It is an interesting (and rich)
research problem to minimize
interlocks in complex multirate

applications. Lee. Berkeley 7

Many Scheduling and Optimization
Problems (and Some Solutions) Resulted

Software Synthesis from
Dataflow Graphs

Optimization criteria that might be applied:
Minimize buffer sizes.
Minimize the number of actor activations.

Minimize the size of the representation
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,
Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, 1996, for a summary of the single
processor optimization problems.

Lee, Berkeley 8

o4

Minimum Buffer Schedule

CD to DAT sample rate conversion

21 2:3 87

57

i ALE) JEEE] |pARE
: :
A FIF FiR Fin

147 147 93 28

32

ABABCABCABABCABCDEAFFFFFBABCABCABABCDE
AFFFFFBCABABCABCABABCDEAFFFFFBCABABCABC
DEAFFFFFBABCABCABABCABCDEAFFFFFBABCABCA
BABCDEAFFFFFBCABABCABCABABCDEAFFFFFEBCA
FFFFFBABCABCDEAFFFFFBABCABCABABCABCDEAF
FFFFBABCABCABABCDEAFFFFFBCABABCABCABABC
DEAFFFFFBCABABCABCDEAFFFFFBABCABCABABCA
BCDEAFFFFFBABCABCABABCDEAFFFFFEBCAFFFFFB
ABCABCABABCDEAFFFFFBCABABCABCDEAFFFFFBA
BCABCABABCABCDEAFFFFFBABCABCABABCDEAFFF
FFBCABABCABCABABCDEAFFFFFBCABABCABCDEAF
FFFFBABCABCABABCABCDEAFFFFFEBAFFFFFBCABC
ABABCDEAFFFFFBCABABCABCABABCDEAFFFFFBCA
BABCABCDEAFFFFFBABCABCABABCABCDEAFFFFFB
ABCABCABABCDEAFFFFFBCABABCABCABABCDEAF

FFFFBCABABCABCDEFFFFFEFFFFF

Source: Shuvra Bhattacharyya

N

160

Lee, Berkeley 9

Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino, Lee)

CD to DAT sample rate conversion

2:1 8:7

57

2:3
Fﬁ;ﬁ ﬂ}égi ﬂ}ié§++ﬁi iiii
98

147 147 28

32

N

160

Scheduling strategy

Code

Data

Minimum buffer schedule, no looping

13735

32

Minimum buffer schedule, with looping

9400

32

Worst minimum code size schedule

170

1021

Best minimum code size schedule

170

264

Source: Shuvra Bhattacharyya

Lee, Berkeley 10

e5

SE |

Gabriel and Ptolemy Classic Provided Co-
Simulation of Hardware and Generated Software

An SDF model,
a “Thor” mode
of a 2-DSP
architecture, a
“logic analyzer”
trace of the
execution of the
architecture,
and two DSP
code debugger
windows, one
for each
processor

1990).
(Zee, Berkeley 11

Model of a
speech
coder
generated
to DSP
assembly
code and
executed
using a
DSP
debugger
interface
with
host/DSP
interaction
(1993).

Lee, Berkeley 12

(]3]

“‘\ with DSP and Sun Workstation (1995)

5 | Example: Heterogeneous Architecture

R 1 DSP card in a Sun Sparc

G Workstation runs a portion of a

' Ptolemy model; the other portion
runs on the Sun

Chowning FM Synthesis

Leyboard

e B
>=-Ch o b =S

1 =1

control panel

turn: PAUSE cSpaces | STOP <Escap

Number of Iterations:

FM_Tndex: 07600 [
volume: 0. 6500 [T R

QuIT

Lee, Berkeley 13

Gradually Increasing Emphasis on Modeling: Ptolemy

Classic Example Showing Higher-Order Components
(adaptlve nuIImg in an antenna array, 1995)

An Adaptive Array Processor with a 4 Element
Uniform Circular Array suppresses three
Caochannel Interferers

hierarchical

=R ?géf'ﬂ nﬁ:ﬁ«m

@ components e
. . || cut@ | maen I
: Beam Patten . B | st U o B0 Y
I | T Output Signal
ps of Armal iy
s el | : — [OF .TJL'L—“ S
] [- - é - L]
amof higher-order -
components . . .
0301 o
Ptolemy application developed by * - *
B A A ; Uwe Trautwein, Technical B T T ,
e = | University of Imenau, Germany sz
_— - Lee, Berkeley 14

o7/

Higher-Order Components Realizing
Recursion in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

oL T or "
distribgt_or] S| L1 | v
: IfThenElse repeat
)“'-_F e
ket | - {
Gk, | T 1
Y |)
..... g | [oer el
FFT of half
the order = x(0}) X(0)
(recursive :ﬂ- >< /
reference) x(2 N X(1)
oy exy) »
4 N
x(1), X(2)
recursive reference
x(3 > X(3)

(1993)

o Production and
consumption of N-
dimensional arrays of data:

Extension of SDF: Multidimensional SSDF

(40, 48)
—

(8.8)

o Balance equations and
scheduling policies
generalize.

o Much more data

mavallAlicrma in AvviInA~AA
Similar (but dynamic)
multidimensional streams have been
implemented in Lucid.

Lee, BeErkeiey 10

o3

Canling Marbe
Squura Input Mot

Two dimensional [}
FFT constructed LK.

MDEDF SCHEDULE:

[AR)] |:1616‘ [1818) [128.128] %l ®m. 128 \%‘ (128,128)
FioatToCx L —‘
L [122,128) (128,128) [128,128)
s I9te
fn]-1

CaToFloat an howimg

OUt Of one- fft_of scuarez.PloatMatrixl, firing range: (0,0)
H H fft_of_ squareZ.FloatMatrixz, firing range: (0,0)
d|menS|0na| fft_of squarez.multl, firing range: (0,0) - (15,15}
Lft_of squareZ.FloatToCxl, firing range: (0,0)
aCtorS- fft_of squarez.FFTCxZ, firing range: (0,0) - (15,0)
Lft_of squarez.FFTCx1, firing range: (0,00 - (0,127)

fft_of squareZ.CxToFloatl, firing range: (0,0)
fft_of squarez.DE1l, firing range: (0,0)
fft_of_ squarez.Galnl, firing range: (0,0)
fft_of_ squarez.showImgl, firing range: (0,0)

Figure 6. Screen dump
of 2D-FFT system, the
associated schedule,

and outputs.

Original Matrix

\ Repeats Original Matrix
M ¥ r— M
L X L
4 N
N / N
Element-wise product Repeats
Downsample
However, such programs Transpose

are extremely hard to
write (and to read).

MDSSDF Structure Exposes
Fine-Grain Data Parallelism

(L,M) (M,N)
(1,1,1) (M,N,1)
Transpose Parameter: (3,1,2)
(1,1,N) (1,M,N)
(1,1,2)
Repeat
[L.1.1)

From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

Lee, Berkeley 18

o9

Another Extension: Cyclostatic Dataflow
(CSDF) Lauwereins et al., TU Leuven, 1994)

e Actors cycle through a regular production/consumption pattern.
e Balance equations become:

R-1 R-1
qunimodP = qumimon; R = |Cm(P,Q)
i=0 i=0

‘ cyclic production pattern ‘

fire A{ fire B{

- channel -
produce Ni. »@ consume M
no,..o,np_l mo,...,mQ71 }

}

Lee, Berkeley 19

Further Extension; Heterochronous
Dataflow (HDF) Girault, Lee, & Lee, 1997)

An actor consists of a state machine and
refinements to the states that define behavior.

010

Heterochronous Dataflow (HDF)
(Girault, Lee, and Lee, 1997)

Related to "parameterized
An interconnection of actors. dataflow” of Bhattacharya

An actor is either SDF or HDF. Clie] a8 77 (00
If HDF, then the actor has:
a state machine
a refinement for each state
where the refinement is an SDF or HDF actor
Operational semantics:
with the state of each state machine fixed, graph is SDF
in the initial state, execute one complete SDF iteration
evaluate guards and allow state transitions
in the new state, execute one complete SDF iteration
o HDF is decidable if state machines are finite

o

o O

[e]

but complexity can be high Lee, Berkeley 21
i Ptolemy II:
\i“\‘\ Pt0|emy 1 Our current framework for
qm. Hierarchical component_ | experimentation with actor-oriented

design, concurrent semantics, visual
syntaxes, and hierarchical,
heterogeneous design.

Ptolemy Il is free software, open-
source software

http: //ptolemy eecs. berkeley edu

‘ example Ptolemy Il model: hybrid control system ‘

Lee, Berkeley 22

oll

Ptolemy Il Framework Supports Diverse
Experiments with Models of Computation

dynamic model structure.

Director from a library

defines component

| | utiities -

|| drector lbrary DE Director 4——
o library
B 7

] generic sources

Master Clock String Sequence

ariableClock
_‘I SeqUence SOUrces

>=

Sequence Count &col 8

&l

= Nisplay Resequenced
Gaussian Square -I
[

interaction semantics

Display As Received

Record Assembler
Channel Model

Type system
for transported

| sinks
- lin
- | math
+-_ | ranciom)
: —:flf!?.iii””' \ = bya veriatie deiay, which S
‘‘‘‘‘ here is random, with a
?-w ‘ Rayleigh distribution [data
&=l Large, behaviorally-
polymorphic component \

library.
4‘ Visual editor supporting an abstract syntax ‘

Lee, Berkeley 23

Separable Too

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

| Architecture

Lee, Berkeley 24

el2

connection

Entity

Relation

Port

Attributes Attributes

* Entities

« Attributes on entities (parameters)
* Ports in entities

« Links between ports

« Width on links (channels)

« Hierarchy

Attributes

Concrete syntaxes:

* XML

* Visual pictures

 Actor languages (Cal, StreamIT, ...)

Lee, Berkeley 25

Meta Model: Kernel Classes
Supporting the Abstract Syntax

NamedObj

1.1
Port 11

-_container : Entity
-_relationsList : CrossRefList

. +Port()
Entity container +Port(w : Workspace)

0.1 on +Port(container : Entity, name : String)| link Relation
-_portList : NamedList +connectedPorts() : Enumeration
LEntiy() containee +?sLinked(r : Bela!ion) : boolean 0.n _portList : CrossRefList
+Entity(name : String) +isOpaque() : bwlgan +Relation()
+Entity(w : Workspace, name : String) :::EE?R::;?S:)O : Enumeration 0.n |+Relation(name : String)
+connectedPorts() : Enumeration +numLinks() : int ik +Relation(w : Workspace, name : String)

+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Er ati
+EnkegRe(I;tlonnslz;\jeénfmneranon ;ulnIIEkAIK; Jati +unlinkAll()
+newPort(name : String) : Port link(r : Relation) #_checkPort(p : Port)

+inkedPorts() : Enumeration
+inkedPorts(except : Port) : Enumeration|
+numLinks() : int

+setContainer(c : Entity)
+unlink(r : Relation)

+removeAllPorts() #_getPortList() : CrossRefList

#_addPort(p : Port)
i#_removePort(p : Port)

These get subclassed for specific purposes.

Lee, Berkeley 26

el3

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 27

MoML
XML Schema for this Abstract Syntax

Ptolemy Il designs are represented in XML

<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
<property name="order" class="ptolemy.data.expr.Parameter'” value="order">
</property>
<port name="input” class="ptolemy.domains.sdf.kernel.SDFIOPort">
</port>
</entity>
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output” relation="relation"/>

Lee, Berkeley 28

el

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 29

i | Abstract Semantics (Informally)
=| of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that we have
implemented:

execution control data transport

receiver.put(t) /
m /

I0Port

« dataflow (several variants)

* process networks

« distributed process networks
« Click (push/pull)

e continuous-time

* CSP (rendezvous)

« discrete events

Receiver « distributed discrete events
(inside port) e synchronous/reactive

« time-driven (several variants)

send(0,t

init()

fire() P1
El1l

IORelation

Lee, Berkeley 30

el5

Register

How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:
o Initialization

o Execution

o Finalization

Lee, Berkeley 31

Registar

How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:

o Initialization E.g., in DE: Post tags on the event

o Execution queue corresponding to any
L initial events the actor wants to

o Finalization produce.

Lee, Berkeley 32

016

How Does This Work?

Execution of Ptolemy Il Actors

Flow of control:
o Initialization

o Execution

o Finalization

Register

Iterate

fire();
postfire();

ﬁ\ If (prefire()) {

i

Only the postfire() method can
change the state of the actor.

Lee, Berkeley 33

How Does This Work?

Execution of Ptolemy Il Actors

Flow of control:

o Initialization
o Execution
o Finalization

Registar

Lee, Berkeley 34

el7

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
private Object state;
boolean prefire() {
it (trigger is known) { return true; }

VOid fi re() { Registar
if (trigger is present) {
send state to output; o
}else { data input port v\tri yger
assert output is absent; input
} port

}
void postfire() {

if (trigger is present) {
state = value read from data input;
3
}

Lee, Berkeley 35

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 36

el8

1 Concrete Semantics Example 1:
« 1| Discrete Event (DE) Model of Computation
& | (MoC)

DE Director implements
timed semantics using an

L= event queue

In DE, actors send time-
stamped events to one
another, and events are
processed in chronological
order.

DE Director

1
Event source ‘ si ,.nﬂmﬂmm N M M |
i 5 M 15 20 25 0
put() method inserts a token

into the event queue.

o

Lee, Berkeley 37

Example 2: Kahn Process Networks (PN)
Model of Computation (MoC)

EH(Decor, This model, whose structure is due to Kahn and MacQueen, calculat aCtOI’ == th read T |n PN' every
integers whose prime factors are only 2, 3, and 5, with no redundancie .
It uses the OrderedMerge actor, which takes two monotonically increagifig aCtOI‘ runs in

input sequences and merges them into one monotonically increasinggButput sequence.
pulsed ¢ Y put e athread,
Scales Ry Boolffinswitch This BooleanSwitch is used |\Wijth b|ocking
N to starve the model after
5l o —— = a power of & greater than reads of
1000000 is produced. This | .
Limit on powers of 5 results in deterministically InpUt ports
_ stopping the execution. and non-
I - | blocking
eradMerge e B
sampeema | Signal == stream | |\urites to
Scale3
OUtpUtS.

OrderedMerge2
ere o€ SampleDelay2

In the PN domain, each actor executes
in its own Java thread. That thread
iteratively reads inputs, performs.

computation, and produces outputs. .
Display
Kahn, MacQueen, 1977 l ’
The output is an ordered sequence of integers of the form
2" * 3"m * 5%, where n, m and k are non-negative integers.

reads block

writes don'’t

ee, Berkeley 38

e19

In SDF, actors “fire,” and in each firing, consume a
fixed number of tokens from the input streams, and

produce a fixed number of tokens on the output
streams.

Synchronous Dataflow Modeling
- Estimate the spectrum of three sinusoids in noise
Sinewave by three different techniques.

Spectrum

SequencePlotter

This example illustrates SDF modeling, which

is well-suited to sighal processing. In SDF,
components communicate using streams, but their
production and consumption rates are fixed.
Because of these fixed rates, extensive static
analysis of the model is possible, enabling
efficient code generation and optimization.

Example 3: Synchronous Dataflow (SDF)

SDF is a special case of PN
where deadlock and
boundedness are decidable. It
is well suited to static
scheduling and code
generation. It can also be
automatically parallelized.

Lee, Berkeley 39

At each tick of a global “clock,” every
signal has a value or is absent.

Example 4: Synchronous/Reactive (SR)

Aoutput from hadsubraet |- |5
File Help
il -

SR Director ManStrictDis play2

NonStrictDelay

¢

This model demonstrates that a NonStrictDelay actor
breaks a feedback loop In a SR model.

MNanStrictDisplay

Like SDF, SR is decidable and suitable for o R
code generation. It is harder to parallelize A
than SDF, however. :
SR languages: Esterel, SyncCharts, Lustre, 21 L
SCADE, Signal. : o

Lee, Berkeley 40

020

Example 5: Rendezvous

RendezwousDirector In RendeZVOUS, every
- llustration of Barrier Synchronization using Rendezvous actor runs in a thread
’
Relation results H H

Ramp mmatey oee | With Dlocking reads of
This model illustrates a design pattern with rendezvous rendezvous. H H
called a "barrier synchronization." In this example, the ‘]L InpUt ports and blOCkIng
two Ramps are sending increasing sequences of integers Writes to OUtpUtS. Every
to the Displays. However, the transfer is constrained to Ramp2 Display2) ! i
aceur only when both the Barrier actor and the Sleep communication is a
actor read inputs. Thus, a multi-way rendezvous between : ‘]f + bl | .
the two Ramp actors, the two Display actors, the Barrier (pOSS| y mu tl'Way)
actor, and the Sleep actor constrains the two transfers Barrier
to the Display actors to occur simultaneously. The rendezvous.
Sleep actor will sleep a random amount of time after y
reading its input, and during that time will not accept
additional inputs. Thus, after the first two (why two?) Sleep

transfers to the Display actors the time between
transfers is controlled by the Sleep actor.

g
i

writes block

Random wait time.

CSP (Hoare), SCCS (Milner), f
Reo (Arbab)

‘ actor == thread H reads block ‘

Lee, Berkeley 41

Example 6: Continuous Time (CT)

Continuous-Time (CT) Solver

- This model shows & noniinear feedback | IN CT, actors operate on
igma: 10.0 tem that exhibits chaotic behavior. : :
Shmbdezs0 temodeled i conimiaus me The | CONtiNUOUS-time and/or
XY Plotier eb:20 CT director uses a sophisticated discrete-event Signals An
of o] ordinary differential equation solver)
X to execute the model. This particular ODE SOlVer gOVernS the
model is known as a Lorenz attractor. .
execution.
Expression 1 Integratof 1
sigma’(2-x1) _[Strahge Attractor I o 2]
5 T T T T T —3
__EmressianZ N N s 4
(lambda-x3)"x1-x2 j Slgnal IS a 16 7
Inegrator3 continuous-time o[1
L _Expression 3) o/ |
- function. Eln i
s]
1l b
’ Director includes an ODE solver. ‘ 17]
1I5 1ID ; g ; 1‘0 1‘5
¥

Lee, Berkeley 42

21

have carefully
constructed

dependencies and
interfaces

Lee, Berkeley 43

Models of Computation
Implemented in Ptolemy Il

Cl — Push/pull component interaction

Click — Push/pull with method invocation

CSP — concurrent threads with rendezvous

Continuous — continuous-time modeling with fixed-point semantics
CT - continuous-time modeling

DDF — Dynamic dataflow

DE - discrete-event systems Most of
DDE - distributed discrete events these are
DPN — distributed process networks actor
FSM — finite state machines oriented.

DT — discrete time (cycle driven)
Giotto — synchronous periodic
GR - 3-D graphics

PN — process networks
Rendezvous — extension of CSP
SDF — synchronous dataflow
SR - synchronous/reactive

TM — timed multitasking

O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOO OO OO

Lee, Berkeley 44

022

Scalability 101:

Hierarchy - Composite Components

transparent or opaque
\CompositeEntity

_J toplevel CompositeEntity

.

J

Lee, Berkeley 45

KT

A

Concurrent actors governed by one model of
computation (e.g., Discrete Events).

The sticky masses system has two modes of operation,
"Separate” and "Together," corresponding to

Modal behavior given in another MoC.

Refinement Solver

the paint masses are stuck together. The "jriit"
has a transition that is used to initialize {hé "Se)
model (double click on that transition 6 see its|

\-} eparat

true
P1=p1;P2=p2

abs(Farce) > Stickfiess
Separate p1 = P4; Separate p2 =

touched_|

This model gives two separate ordinary differential
equations, one for each point mass attached to a spring.
The ZeroCrossingDetector actor detects the collision

of the point masses and emits the "touched" event.

P1 integrator

Detailed dynamics

P2 integrator

in a third MoC

AddSubtract

ZeroCrossingDetector V1 and V2 are velocities,

and P1 and P2 are positions
of the two masses.

touched

This requires a composable abstract semantics.

Lee, Berkeley 46

Supports Hybrid Systems

discrete-event, and continuous-time

semantics offer a powerful way to represent

and execute hybrid systems.

velocities ModaliModel pasitions
theta_1_dot x 1

initialTheta,
initial Theta_dot,

ballClass _ .

initial Thetay

a p-
initialTheta_dot E]D theta
pineta_co

initialTheta,

initial Theta_dot,

~

initialTheta,
initialTheta_dot,

HyVisual is a
specialization of the
meta framework
Ptolemy I1.

ball1

ER

ball2

Hierarchical Heterogeneity (HH)

Newto

x 2
>§ theta_2

5]

ball3

. theta_2_dot

x 3

P theta_3

{55]

bt

theta_3_dot

n's Cradle

Lee, Berkeley 47

Each actor is a function:
f:(T>B)"> (T->B""

Composition in three forms:

o Cascade connections

o Parallel connections

o Feedback connections

All three are function composition.

The nontrivial part of this is feedback, but
we know how to handle that.

In All Cases: Composition Semantics

The concurrency model is

called the “m

computation”

odel of
(MoC).

The model of computation
determines the formal

properties of

Useful MoCs

the set T:

e Process Networks

» Synchronous/Reactive
e Time-Triggered

« Discrete Events

» Dataflow

* Rendezvous

¢ Continuous

Time

Lee, Berkeley 48

024

Semantics

Example: DE
Actor
signal in —» Hio p— signal out
F

A signal is a partial function:
Data type

F:RxN _)T<_(S€t0f
\ values)

Real numbers ol numbers (allowing

E)apgrot)ilmated for simultaneous events in
y doubles) a signal)

Note: A
signal is
not a
single
event but
all the
events
that flow
on a path.

Lee, Berkeley 49

Semantics Clears Up Subtleties:
E.g. Simultaneous Events

8 I8 AR R Hline

DE Director il 5 1.5 i

TimedPlotter 0.
o

5 10 15 20

25 a0

TimedPlotter2

Bernoulli

v
I

L

By default, an actor produces events with the same time as the input

event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event
from the PoissonClock. Events with identical time stamps are also ordered,

and reactions to such events follow data precedence order.

Lee, Berkeley 50

e25

Semantics Clears Up Subtleties:
E.g. Feedback

DEE Direclor Sensor
eforgettingRate: 0.5

InstanceOfSensor

Merge
l‘_E;'pnzs:zien

q P
InstanceOfSenga e : previous * forg gRate +x" (1.0 - Rate)
Register g
o

TimedPlotter

Tam

g

L 4

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

Lee, Berkeley 51

Discrete-Event Semantics

Cantor metric:
d(x,y)=1/2°

where 7 is the earliest time where x and y differ.

A

Lee, Berkeley 52

026

Causality

Causal:

d(y,y)<d(xx)

Strictly causal:

Ko Sy d(yy)<d(xx)

T~
X'/' ~_

A delta-causal component is a “contraction map.”

!
y Delta causal:

30 <1,
d(y,y)<ad(xX)

Lee, Berkeley 53

Semantics of Composition

-.‘} J \ \ :
‘_‘nf%_._'_

If the components
are deterministic, Block1 Blockz Blocks
e . Requestl - | < 4l
the composition is | |£w.+—3 &2 : 2
deterministic.

1

X=Yy =
CompositeActor

F(0)=x eh

Banach fixed point theorem:

» Contraction map has a unique fixed point

» Execution procedure for finding that fixed point
e Successive approximations to the fixed point

Lee, Berkeley 54

027

Zeno Systems [«

108

100

085
0sop

DE Director 10 11 12 13 14 1.5 16

SingleEvent Merge
VariableDelay

Expression

Theorem: If every directed cycle contains a delta-causal
component, then the system is non-Zeno.

Lee, Berkeley 55

Current Research in the Ptolemy Project

o Precision-timed (PRET) machines: This effort reintroduces timing into the core abstractions of
computing, beginning with instruction set architectures, using configurable hardware as an
experimental platform.

o Real-time software: Models of computation with time and concurrency, metaprogramming
techniques, code generation and optimization, domain-specific languages, schedulability
analysis, programming of sensor networks.

o Distributed computing: Models of computation based on distributed discrete events,
backtracking techniques, lifecycle management, unreliable networks, modeling of sensor
networks.

o Understandable concurrency: This effort focuses on models of concurrency in software that
are more understandable and analyzable than the prevailing abstractions based on threads.

o Systems of systems: This effort focuses on modeling and design of large scale systems, those
that include networking, database, grid computing, and information subsystems. See for
example the Kepler project, which targets scientific workflows.

o Abstract semantics: Domain polymorphism, behavioral type systems, meta-modeling of
semantics, comparative models of computation.

o Hybrid systems: Blended continuous and discrete dynamics, models of time, operational
semantics, language design.

Lee, Berkeley 56

28

Install it!

o Latest release:
http://ptolemy.org
Follow Ptolemy II, downloads

o CVS tree:
http://chess.eecs.berkeley.edu/ptexternal/

Lee, Berkeley 57

029

