
Controller Area Network

Marco Di Natale
Scuola Superiore S. Anna- Pisa, Italy



CAN bus

Controller Area Network
– Publicly available standard [1] 

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

Serial data bus developed by Bosch in the 80s
– Support for broadcast and multicast comm
– Low cost
– Deterministic resolution of the contention– Deterministic resolution of the contention
– Priority-based arbitration
– Automotive standard but used also in automation, 

factory control, avionics and medical equipment
– Simple, 2 differential (copper) wire connection
– Speed of up to 1Mb/s
– Error detection and signalling



CAN bus

Purpose of this Lesson
– Yet another communication protocol standard ?
– Develop time analysis for real-time messages
– Study the effect on timing of multiple layers (HW and 

SW)
– Understand how firmware can affect the time – Understand how firmware can affect the time 

determinism and spoil the priority assignment
– Understand how device drivers and middleware 

layers influence the timing behavior
– Present multiple views for the time analysis (worst-

case, stochastic, simulation-based)



CAN bus

A CAN-based system 

System 

Appl.
SW

Middleware

Application

Peripheral 
HW

System 
SW Device 

drivers RTOS

Middleware

Firmware
(MAC layer 

implementation)

TX buffers
(TXobjects)

typically 1 to 32

RX buffers
(RXobjects)

typically 1 to 32



CAN bus

CAN standard (MAC protocol)
– Fixed format messages with limited size
– CAN communication does not require node (or 

system) configuration information (addresses)
• Flexibility – a node can be added at any time
• Message delivery and routing – the content is identified by an 

IDENTIFIER field defining the message contentIDENTIFIER field defining the message content
• Multicast – all messages are received by all nodes that can 

filter messages based on their IDs
• Data Consistency – A message is accepted by all nodes or 

by no node



CAN bus

Frame types
DATA FRAME

• Carries regular data

REMOTE FRAME
• Used to request the transmission of a DATA FRAME with the 

same ID

ERROR FRAME ERROR FRAME 
• Transmitted by any unit detecting a bus error

OVERLOAD FRAME
• Used to force a time interval in between frame transmissions



CAN bus

DATA FRAME



CAN bus

DATA FRAME
Start of frame – 1 dominant bit. A frame can only start when the 

bus is IDLE. All stations synchronize to the leading edge of the 
SOF bit

Identifier – 11 (or 29 in version 2.0) bits. In order from most 
significant to least significant. The 7 most significant bits cannot 
be all recessive 

RTR – remote transmission request, dominant for REQUEST RTR – remote transmission request, dominant for REQUEST 
frames, recessive for DATA frames

CONTROL – (see figure) maximum data length is 8 (bytes) other 
values are not used



CAN bus

DATA FRAME (conitinued)
Data – 0 to 8 bytes of data
CRC – 15 CRC bits plus one CRC delimiter bit (recessive) 
ACK – two bits (SLOT + DELIMITER) all stations receiving the 

message correctly (CRC check) set the SLOT to dominant (the 
transmitter transmits a recessive). The DELIMITER is recessive

END OF FRAME – seven recessive bits

Bit stuffing 
any sequence of 5 bits of the same type requires the 
addition of an opposite type bit by the TRANSMITTER 
(and removal from the receiver)



CAN bus

Some considerations …

1 11+1
29+3

6 0-64 15+1 2 3

SOF Arbitration Control Data CRC ACK EOF

7

Protocol overhead
(minimum with no stuffing)

64/111 = 0.576 data efficiency (73.4% protocol overhead)

Worst case frame length
34 bits subject to stuffing

64 + (64 + 34)/4 + 47 = 111 + 24 = 135



CAN bus

Arbitration
All nodes are synchronized on the SOF bit
The bus behaves as a wired-AND (wired-OR)
An example …

00101011010 01111010010 00111110110

Id = 0x15a Id = 0x3d2 Id = 0x1f6

00101011010 01111010010 00111110110
0 0 0

0

sof

0

0 1 0

0

1 10 1

1 0

1011010

1 0



CAN bus

The type of arbitration implies that the bit time is at least twice the 
propagation latency on the bus

This defines a relation between the maximum bus length and the 
transmission speed. The available values are 

Bit rate Bus length

1 Mbit/s 25 m

node A

ti
m

e 1 Mbit/s 25 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

node B

node A starts 
transmitting a bit

node B 
overwrites

node A reads the effect 
of changes by B

M
in

im
u

m
 b

it
 t

im
e

ti
m

e



CAN bus

Bit time

The bit edge 
lies here

Twice the 
propagation 

delay

Compensate 
edge phase 

errors



CAN bus

Error and fault containment
There are 5 types of error
BIT ERROR

The sender monitors the bus. If the value found on the bus is 
different from the one that is sent, then a BIT ERROR is detected

STUFF ERROR
Detected if 6 consecutive bits of the same type are foundDetected if 6 consecutive bits of the same type are found

CRC ERROR
Detected by the receiver if the received CRC field does not match 

the computed value

FORM ERROR
Detected when a fixed format field contains unexpected values

ACKNOWLEDGEMENT ERROR
Detected by the transmitter if a dominant value is not found in the 

ack slot



CAN bus

A station detecting an error transmits an ERROR FLAG.
For BIT, STUFF, FORM, ACKNOWLEDGEMENT errors, it 

is sent in the immediately following bit.
For CRC it is sent after the ACK DELIMITER 
The ERROR FLAG is part of an ERROR FRAME



CAN bus

An ERROR FRAME is simply the superposition of ERROR 
FLAGS from different nodes, plus an ERROR DELIMITER

There are two types of error flags:
An ACTIVE ERROR flag consists of 6 consecutive dominant bits
A PASSIVE ERROR flag consists of 6 consecutive recessive bits

The superposition of all the error flags goes from 6 to 12 bits
The error delimiter consists of 8 recessive bitsThe error delimiter consists of 8 recessive bits



CAN bus

Fault containment
Each node can be in 3 states:

Error active
Error passive: limited error signalling and transmission features
Bus off: cannot influence the bus

Each node has two counters:
TRANSMIT ERROR COUNT: TRANSMIT ERROR COUNT: 

increased – (list) by 8 when the transmitter detects an error …
decreased – by 1 after the successful transmission of a message 
(unless it is 0)

RECEIVE ERROR COUNT: 
increased – (list) by 1 when the node detects an error, by 8 if it 
detects a dominant bit as the first bit after sending an error flag …
decreased – (if between 1 and 127 by 1, if >127 set back to a value 
between 119 and 127) after successful reception of a message



CAN bus

Fault containment
Each node can be in 3 states:

Error active
Error passive: limited error signalling and transmission features
Bus off: cannot influence the bus

≥≥≥≥

error 
active

error 
passive

bus off

TRANSMIT ERROR COUNT ≥≥≥≥ 128 or

RECEIVE ERROR COUNT ≥≥≥≥ 128
TRANSMIT ERROR COUNT ≥≥≥≥ 256

TRANSMIT ERROR COUNT ≤≤≤≤ 127 and

RECEIVE ERROR COUNT ≤≤≤≤ 127

TRANSMIT ERROR COUNT = 0 and

RECEIVE ERROR COUNT = 0 and …



CAN bus

Error detection
Possible problems on the last but one bit [7]
CAN misbehavior is possible because of the different error 

detection mechanisms at the transmitter and receiver 
sites

A message is valid for the transmitter is there is no error 
until the end of the frame

A message is valid for the receiver is there is no error until A message is valid for the receiver is there is no error until 
the last but one bit of the frame (last bit is do not care)

If the receiver accepts the message, it may have an 
inconsistent message duplicate
Use of sequence numbers fixes the duplicate error
…but does not prevent messages from being received in different 

orders
If the sender fails before retransmitting there may be an 

inconsistent message omission …



CAN bus

Timing Analysis (and inversions) – Ideal behavior

Assumption 1: nodes are not synchronized, 
nor any assumption on local clocks is used by 
the MW and driver levels

Assumption 3: periodic messages, 
but no assumption on the 
message phases

Assumption 2: messages are always 
transmitted by nodes based on their priority 
(ID) – ideal priority queue of messages



CAN bus

Timing Analysis (and inversions) – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x103

id = 0x111

id = 0x141

id = 0x202

id = 0x122

id = 0x261id = 0x304



CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

Critical instant theorem: for a preemptive priority based scheduled resource, the 
worst case response time of an object occurs when it is released together with 
all other higher priority objects and they are released with their highest rate



CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103
id = 0x261
id = 0x304

id = 0x122
id = 0x141

id = 0x111
id = 0x202

id = 0x261

spend time in local queue 
(higher priority messages are transmitted with max rate)

Ii

id = 0x103

id = 0x111

Message 
transmission time

Ci

Mi

Message Mi starts its 
transmission

id = 0x122
id = 0x141
id = 0x202



CAN bus

Timing Analysis – worst case latency – Ideal behavior [2]
The transmission of a message cannot be preempted

id = 0x261
Ii

id = 0x103

id = 0x111

Ci

Mi

Message Mi starts its 
transmission

Bi
blocking from lower priority messages

qi = time spent in local queue 

Ii

Message 
transmission time

Ci

id = 0x304

Bi
interference from higher priority messages

iii IBq +=

iii Cqw +=

∑
∈

=
)(

,
ihpj

jii II
j

ihpj j

i
ii C

T

q
Bq ∑

∈ 










+=

)(

j
j

i
ji C

T

q
I












=,

Fixed point formula: solved iteratively by 
setting qi(0)=0 until the minimum solution 
is found



CAN bus

The worst case response time analysis has been (partly) 
refuted and revised in [9]

An example (SAE benchmark) for a 125 kb/s bus [3]

Msg Size T D
1 1 50 5
2 2 5 5
3 1 5 5

Msg Size T D
10 3 10 10
11 1 50 20
12 4 100 100

R
1.44
2.04
2.56

R
9.68
18.6

19.28

C
0.52
0.60
0.52

C
0.68
0.52
0.763 1 5 5

4 2 5 5
5 1 5 5
6 2 5 5
7 6 10 10
8 1 10 10
9 2 10 10

12 4 100 100
13 1 100 100
14 1 100 100
15 3 1000 1000
16 1 1000 1000
17 1 1000 1000

2.56
3.16
3.68
4.28
7.88
8.4

9

19.28
19.8

29.24
29.76
38.68
38.68

0.52
0.60
0.52
0.60
0.92
0.52
0.60

0.76
0.52
0.52
0.68
0.52
0.52



CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– Priority enqueuing in the sw layers
– Availability of TxObjects at the adapter
– Possibility of preempting (aborting) a transmission attempt
– Finite copy time between the queue and the TxObjects
– The adapter may not transmit messages in the TxObjects by – The adapter may not transmit messages in the TxObjects by 

priority

But first ….
– Let’s examine the functional and architecture-level models and 

the MW, RTOS and driver management policies



CAN bus

Functional and architecture-level models and the MW, 
RTOS and driver management policies

Functional blocks

Functional 
Model

signals

signal -to-message 
Functional blocks

signal -to-message 
mapping



RxTask

Transmission modes (1)

TxTask

RxObjects

Receiving node
Transmitting node

TxObject

3

4

9

1

4

9

3

1

Interrupt

interrupt based
TX driver

3

Interrupt 
handler latency

1

3



CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– Priority enqueuing in the sw layers
– …

If the messages are not enqueued by priority, additional 
priority inversion may occur. This may happen because of 
the way messages are enqueued in the SW layers the way messages are enqueued in the SW layers 
(MW/drivers), for example if a FIFO queue is used



CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– …
– Availability of TxObjects at the adapter
– Finite copy time between the queue and the TxObjects

Adapters typically only have a limited number of TXObjects 
or RxObjects available



CAN bus

A number of issues need to be considered …
– …
– Availability of TxObjects at the adapter

• Let’s check the controller specifications!



CAN bus

What happens if only one TxObject is available?
– Assuming preempatbility of TxObject

id = 0x103

id = 0x261

id = 0x304

id = 0x122 id = 0x2a1

id = 0x2d2id = 0x341

id = 0x261

id = 0x122

id = 0x103

preemption

id = 0x261

Priority inversion for =x261 
AFTER its queuing time



CAN bus

What happens if two TxObjects are available?



CAN bus

In reality, because of the polling-based management at the 
receiving side, designers prefer to use as many Objects as 
possible for the porpose of receiving messages and only 
one (or a very limited number) for message transmission !

id = 0x103
id = 0x261

id = 0x323

id = 0x143

id = 0x1af

id = 0x263

id = 0x2a3

!!!!

!!!!



CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– …
– Possibility of preempting (aborting) a transmission attempt

And the TxObjects are usually not preempted!



CAN bus

A number of issues need to be considered …
– …
– The adapter may not transmit messages in the TxObjects by 

priority

• Let’s check the controller specifications!

!!!!



CAN bus

In this case, especially if coupled with non-preemptability of 
TxObjects, the priority order of the queue may be completely 
subverted.

– Think of the problems in the implementation of a preemtpive 
policy!

id = 0x103
id = 0x261

id = 0x323

id = 0x143

id = 0x1af

id = 0x263

id = 1

id = 2

id = 0x0afid = 3

id = 0x28d

id = 0x2a3

!!!!

!!!!



CAN bus

Finally …
– The driver management policies may be different from what you 

would expect …



TxTask

Transmission modes (1)

TxTask

interrupt based polling based

TxObject

3

4

9

1

4

9

3

3

4

9

1

4

9

3

Polling Task

1 1 3

Interrupt

TxObject

3

Interrupt 
handler latency

Polling task 
period



CAN bus

How about the average latency behavior ?
Other types of analysis are possible
By simulation

– Probably the only one that can capture effects like finite copy 
times, insufficient number of buffers, non-preemptability of 
TxObjects …

Stochastic analysisStochastic analysis
– See recent work with Haibo Zeng [8].
– Suprisingly close to the results of trace analysis with non-

preemptable single TxObjects and finite copy times!



CAN bus

Bibliography
[1] CAN Specification, Version 2.0. Robert Bosch GmbH. Stuttgard, 1991, 

http://www.semiconductors.bosch.de/pdf/can2spec.pdf
[2] K. Tindell, H. Hansson, and A. J. Wellings, Analysing real-time communications: 

Controller area network (can),' Proceedings of the 15th IEEE Real-Time Systems 
Symposium (RTSS'94), vol. 3, no. 8, pp. 259--263, December 1994.

[3] H. Kopetz, A solution to an automotive control system benchmark, Institut fur 
Technische Informatik, Technische Universitat Wien, Tech. Rep., April 1994.

[4] Gergeleit M., H. Streich. Implementing a Distributed High-Resolution Real-Time clock 
using the CAN-Bus. Proceedings of the 1st International CAN Conference. Mainz, 
Germany 1994.

[5] D. Lee and G. Allan. Fault-tolerant Clock synchronisation with Microsecond-precision [5] D. Lee and G. Allan. Fault-tolerant Clock synchronisation with Microsecond-precision 
for CAN Networked Systems. Proceedings of the 9th International CAN Conference, 
Munich, Germany, 2003.

[6] A. Meschi M. Di Natale M. Spuri Priority Inversion at the Network Adapter when 
Scheduling Messages with Earliest Deadline Techniques , Euromicro Conference on 
Real-time systems, L’Aquila, Italy 1996.

[7] Jose Rufino and Paulo Verissimo and Guilherme Arroz and Carlos Almeida and Luis 
Rodrigues "Fault-Tolerant Broadcasts in CAN", Symposium on Fault-Tolerant 
Computing", 150-159, 1998.

[8] Stochastic Analysis of Controller Area Network Message Response Times, Haibo 
Zeng, Paolo Giusto, Marco Di Natale, Alberto Sangiovanni Vincentelli, submitted to 
the 2008 RTAS

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network (can) 
schedulability analysis: Refuted, revisited and revised. In RTN06, Dresden, Germany, 
July 2006.


