Heterogeneous Models of Computation: An Abstract Algebra Approach

EE249 Lecture

Taken from

Roberto Passerone PhD Thesis

Objectives

- ◆Provide the foundation to represent different semantic domains for the Metropolis metamodel
- ◆ Study the problem of heterogeneous interaction
- ◆ Formalize concepts such as abstraction and refinement

An Example of Interaction

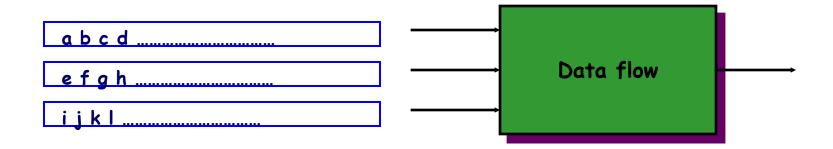
- Combine a synchronous model with a dataflow model
- Synchronous model
 - Total order of event
- ◆ Data flow model
 - Partial order of events
- Discrete Time model
 - Metric order of events

An Example of Heterogeneous Interaction

- ◆The interaction is derived from a common refinement of the heterogeneous models
- ◆The resulting interaction depends on the particular refinements employed
- ◆Our objective is to derive the consequences of the interaction at the higher levels of abstraction

Data Flow Model

- ◆ Assume signals take values from a set V
- ◆ Each signal is a sequence from V (an element of V*)
- ◆Let A be the set of signals
- One behavior is a function
 - $f: A \rightarrow V^*$
- ◆ A data-flow agent is a set of those behaviors

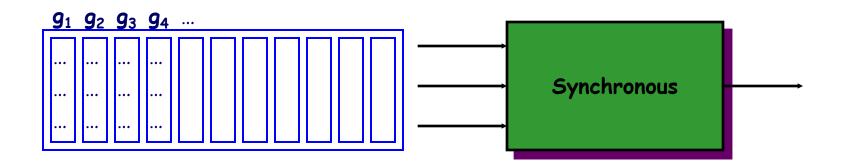


Synchronous Model

- ◆Signals are again sequences from V (elements of V*)
- ... But are synchronized
- lacktriangle One element of the sequence is $g:A\to V$
- ◆One behavior is a sequence of those functions

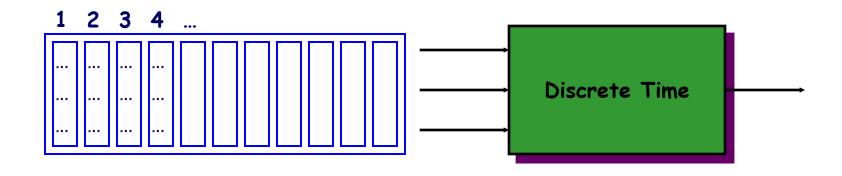
$$\cdot \langle g_i \rangle \in (A \rightarrow V)^*$$

◆ A synchronous agent is a set of those sequences

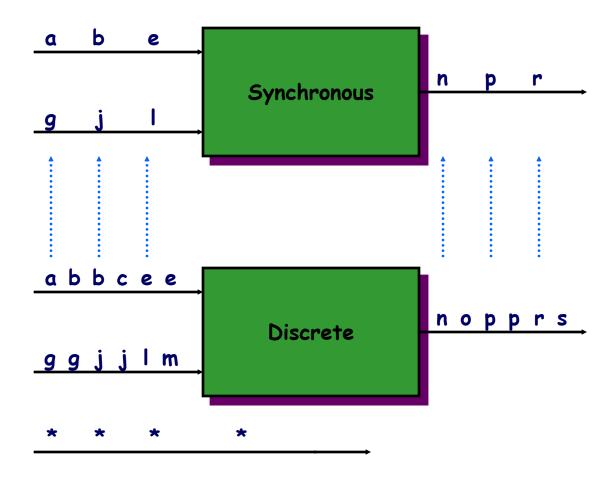


Discrete Time Model

- ◆ Assume time is represented by the positive integers N
- ◆Then define a behavior
 - h: $N \rightarrow (A \rightarrow V)$
- ◆ A discrete time agent is a set of those functions



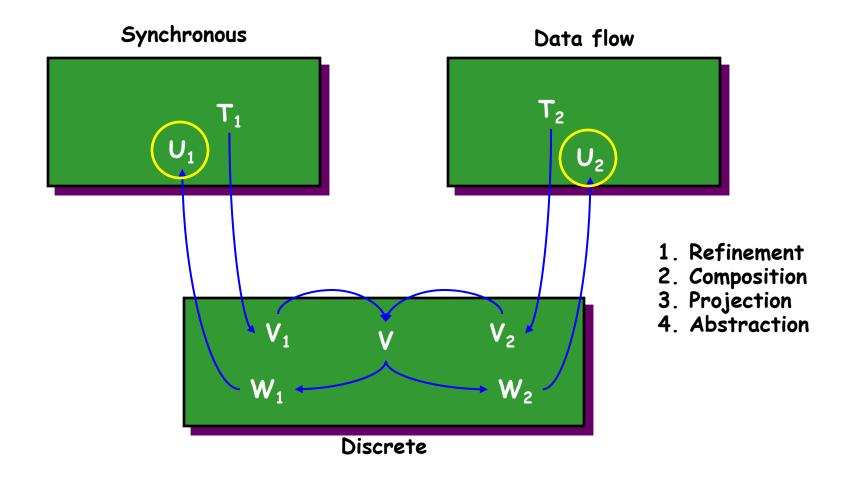
Discrete to Synchronous Abstraction



Discrete to Data Flow Abstraction



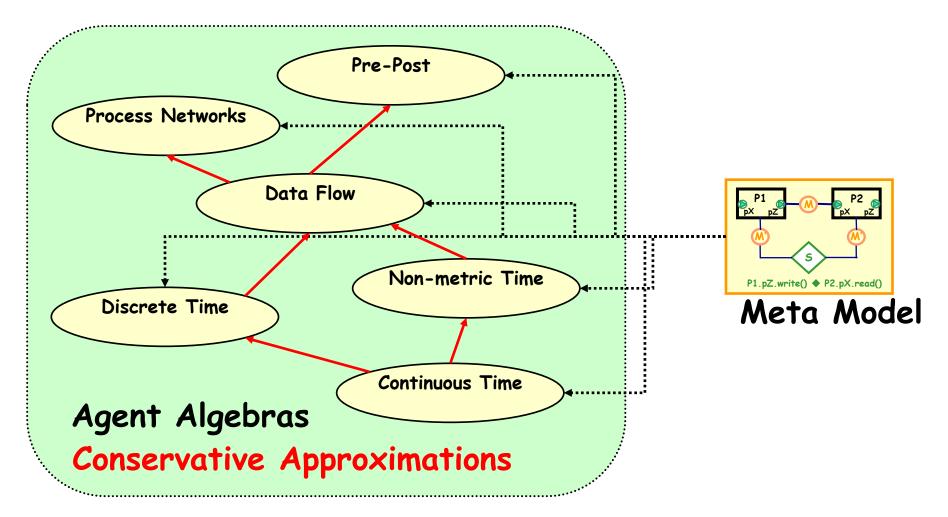
Interaction Propagation



Objectives

- Provide a semantic foundations for integrating different models of computation
 - Independent of the design language
 - Not just specific to the Metropolis meta-model
- Maximize flexibility for using different levels of abstraction
 - For different parts of the design
 - At different stages of the design process
 - For different kinds of analysis
- ◆ Support many forms of abstraction
 - Model of computation (model of time, synchronization, etc.)
 - Scoping
 - Structure (hierarchy)

Overview



Domain of agents with operations: projection, renaming and composition

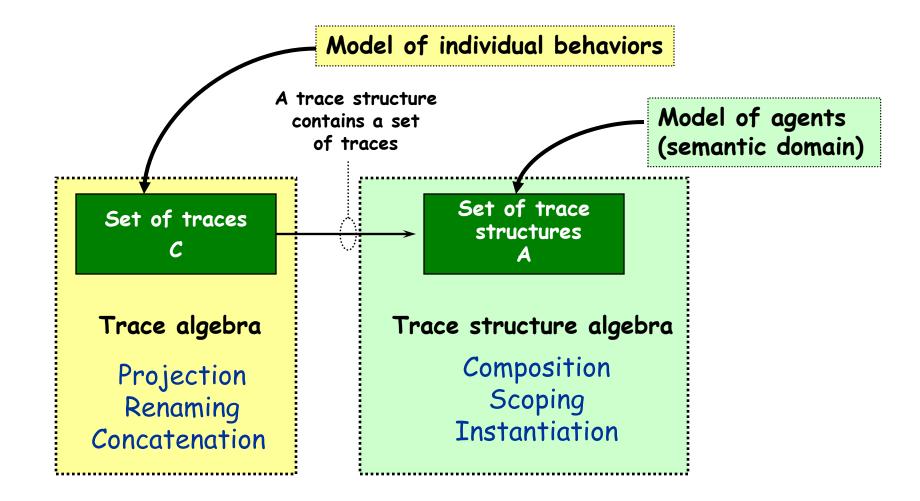
Scope

- Concentrate on
 - Natural semantic domains (sets of agents)
 - Relations and functions over semantic domains
 - Relationships between semantic domains and their relations and functions
- Defer worrying about specific abstract syntaxes and semantic functions
 - · Convenient for manual, formal reasoning
 - De-emphasizing executable and finitely-representable models (for now)

Agents and Behaviors

- For each model of computation we always distinguish between
 - the domain of individual behaviors
 - the domain of agents
- ◆ For different models of computation individual behaviors can be very different mathematical objects
 - We always call these objects traces
 - The nature of the elements of the carrier is irrelevant!
- ◆ An agent is primarily a set P of traces
 - We call them trace structures
 - Also includes the signature: $T = (\gamma, P)$

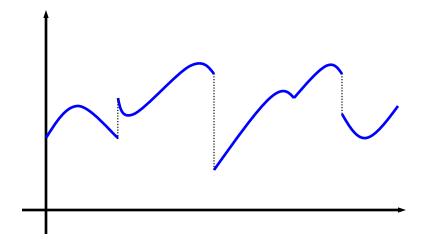
Trace and Trace Structure Algebras



Essential Elements

- Must be able to name elements of the model
 - Variables, actions, signals, states
 - We do not distinguish among them and refer to them collectively as a set of signals W
- ◆ Each agent has an alphabet and a signature
 - Alphabet: A ⊆ W
 - Signature: $\gamma = A$, $\gamma = (I, O)$, etc.
- ◆ The operations on traces and trace structures must satisfy certain axioms
 - The axioms formalize the intuitive meaning of the operations
 - They also provide hypothesis used in proving theorems
 - Trade-off between generality and structure

Metric Time Traces



$$\gamma = (V_R, V_N, M_I, M_O)$$
 $x = (\gamma, \delta, f)$
 $f(v) = [0, \delta] -> R$
 $f(n) = [0, \delta] -> N$
 $f(a) = [0, \delta] -> \{0, 1\}$

- ◆ Model time as a metric space
 - Can talk about the difference in time between points in the behavior in quantitative terms
 - Able to specify timing constraints in quantitative terms
- ◆ Able to represent continuous as well as discrete behavior
- Projection and renaming easily defined on the functions

Metric Time Model: Traces

- ◆ A trace x models one execution of a hybrid system:
- Signature $\gamma = ($

V_R: real valued var's,

V_N: integer valued var's,

 M_{I} : input actions,

 M_O : output actions)

- lacktriangle The alphabet A of x is the union of the components of γ
- lacklash δ is a non-negative real number
 - Length (in time) of x
 - · Can be infinity

• f gives values as a function of time:

 $f: V_R \longrightarrow [0, \delta] \longrightarrow R,$

f: $V_N --> [0, \delta] --> N$,

 $f: M_T \longrightarrow [0, \delta] \longrightarrow \{0, 1\},$

 $f: M_O \longrightarrow [0, \delta] \longrightarrow \{0, 1\}.$

Metric Time Model: Operations on Traces

- \bullet Let x' = proj(B)(x)
 - · represents scoping
 - B is a subset of A
 - γ' and f' are restricted to variables and actions in B
 - \bullet $\delta' = \delta$
- \bullet Let x' = rename(r)(x)
 - represents instantiation
 - r is a one-to-one function with domain A
 - variables and actions in γ' and
 f' are renamed by r
 - $\delta' = \delta$

- ◆ Let x" = x · x'
 (concatenation)
 - represents sequential composition
 - $\gamma' = \gamma$, d is finite, and end of x matches beginning of x'

•
$$\gamma'' = \gamma$$

f"(v, t) is equal to
 f(v, t) for t ≤ d
 f'(v, t - d) for t ≥ d

Metric Time Model: Trace Structures

- lacktriangle A trace structure T = (γ , P) models a process or an agent of a hybrid system
 - P is a set of traces with signature γ

Traits:

- ♦ T refines T' if $P \subseteq P'$
- Natural model for physical components (such as those described with differential equations, possibly with discrete control variables)
- ◆ Too detailed for many other aspects of embedded systems
- Not a finite representation
 - Finite representations, synthesis and verifications algorithms are clearly important, but not a focus of this class
- Trace structures constructed the same way for any trace algebra

Metric Time Model: Operations on Trace Structures

- \bullet Let T' = proj(B)(T)
 - B is a subset of A
 - \cdot γ' is restricted to variables and actions in B
 - P' = proj(B)(P)
- ◆ Let T' = rename(r)(T)
 - r is a one-to-one function with domain A
 - \bullet variables and actions in γ' are renamed by r
 - \cdot P' = rename(r)(P)

- ◆ Let T" = T | | T' (par. comp.)
 - γ'' combines γ and γ'
 - P" maximal set s.t.

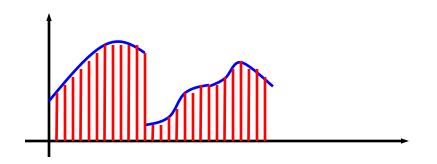
$$P = proj(A)(P'')$$

$$P' = proj(A')(P'')$$

♦ Let $x'' = x \cdot x'$ (seq. comp.)

•
$$\gamma' = \gamma$$

Non-metric Time Traces



$$\gamma = (V_R, V_N, M_I, M_O)$$

$$x = (\gamma, L)$$

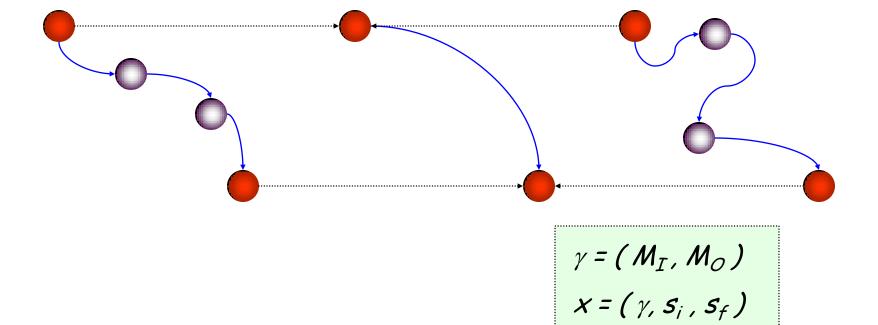
$$m(t) = V_R \rightarrow R$$

$$V_N \rightarrow N$$

$$M \rightarrow \{0, 1\}$$

- Model time as a non-metric space
 - Can only talk about precedence in time (including dense time)
- ◆ Based on Totally Ordered Multi-Sets
 - Totally ordered vertex set V
 - · Labeling function μ from the vertex set ${m V}$ to a set of actions Σ
 - We do not distinguish isomorphic vertex sets

Pre-Post Traces

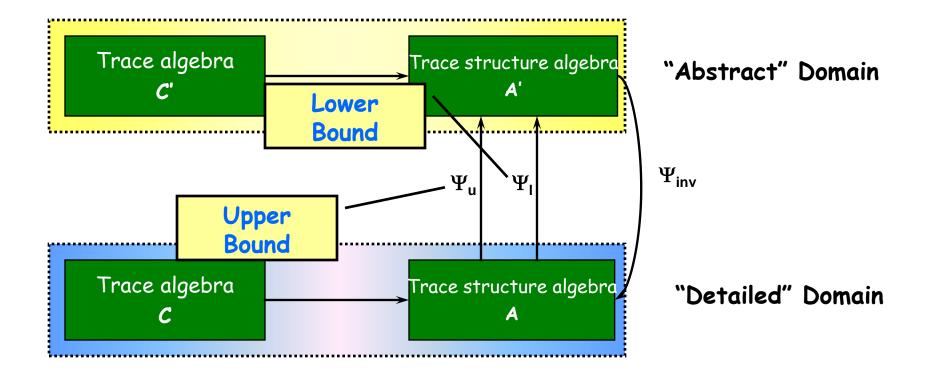


- Model only pre- and post-conditions (not intermediate states)
- Suitable for studying the semantics of programming languages
- ◆ Trace theory version of Hoare triples

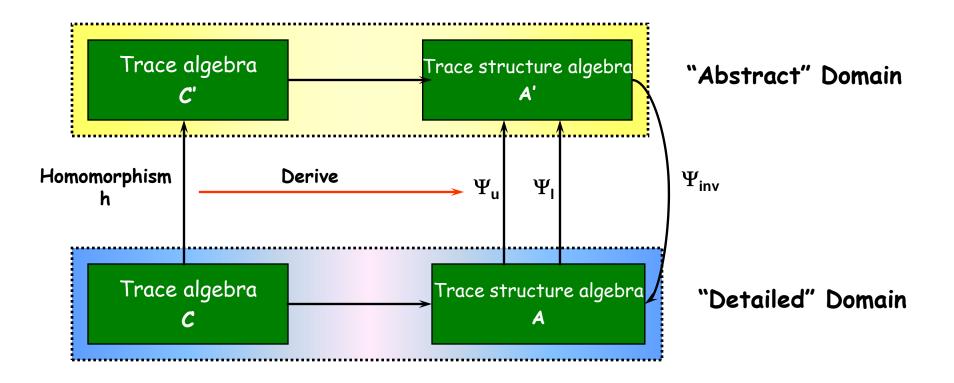
Relationships between Semantic Domains

- ◆ Each semantic domain has a refinement order
 - Based on trace containment
 - $T_1 \subseteq T_2$ means T_1 is a refinement of T_2
 - · Guiding intuition: $\mathsf{T}_1 \subseteq \mathsf{T}_2$ means T_1 can be substituted for T_2
- Abstraction mapping
 - If a function H between semantic domains is monotonic, detailed implies abstract: If $T_1 \subseteq T_2$ then $H(T_1) \subseteq H(T_2)$
 - · Analogy for real numbers r and s: If $r \le s$ then $\lfloor r \rfloor \le \lfloor s \rfloor$
- ◆ Conservative approximations
 - A pair of functions $\Psi = (\Psi_1, \Psi_u)$ is a conservative approximation if $\Psi_u(T_1)$ $\subseteq \Psi_1(T_2)$ implies $T_1 \subseteq T_2$
 - Analogy: $\lceil r \rceil \leq \lfloor s \rfloor$ implies $r \leq s$
 - Abstract implies detailed

Trace and Trace Structure Algebras



Deriving Conservative Approximations



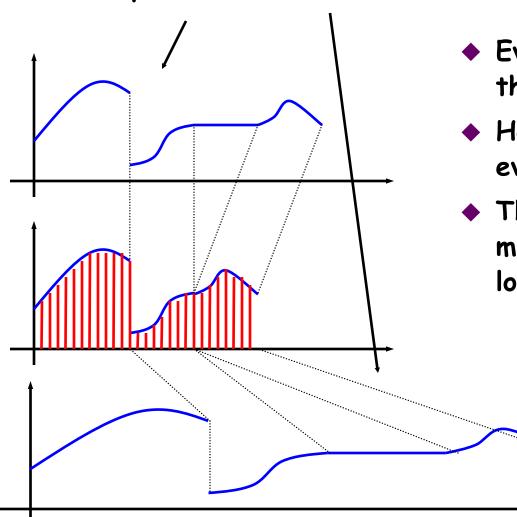
Homomorphism: mapping that commutes with the operations of projection, renaming and concatenation on traces

Homomorphism

- ◆ From metric to non-metric
 - Must define a notion of event in the metric model
 - Must define how to construct the corresponding vertex set
- ◆ From non-metric to pre-post
 - Simply remove the intermediate steps and keep only the endpoints

Metric to Non-Metric Traces

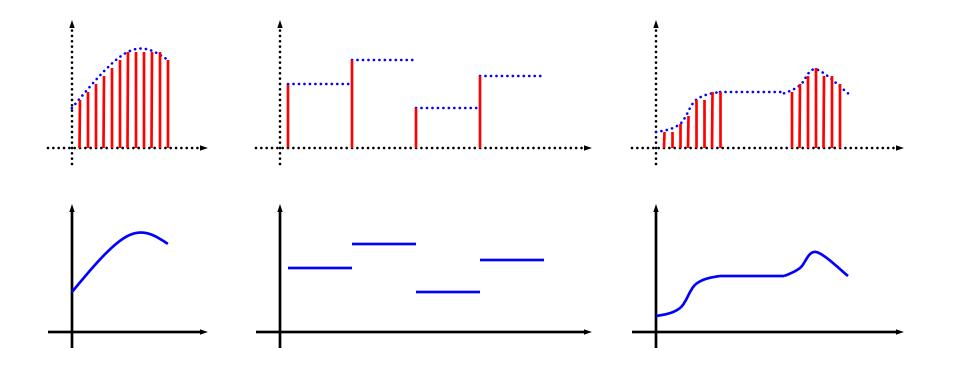
Equivalent traces



- Event: point in time where the function changes value
- Homomorphism discards nonevent points
- The information about metric time is effectively lost

From Metric to Non-metric Time

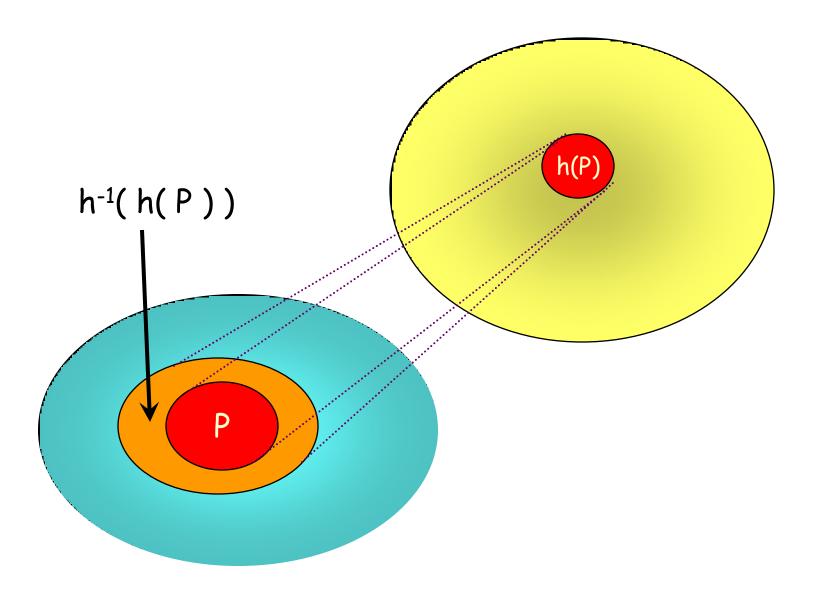
- f is stable at t_0 if there is $\varepsilon > 0$ such that f is constant on $[t_0 \varepsilon, t_0]$
- f has an event at t_0 if it is not stable
- Vertex Set $V = \{ t_0 / f \text{ has an event at } t_0 \}$



Building the Upper Bound

- ◆Let P be a set of traces, and consider the natural extension to sets h(P) of h
- ♦ Clearly $P \subseteq h^{-1}(h(P))$
 - · Because h is many-to-one
 - This indeed is an upper bound!
 - · Equality holds if h is one-to-one
- ♦ Hence define
 - $\Psi_{u}(T) = (\gamma, h(P))$

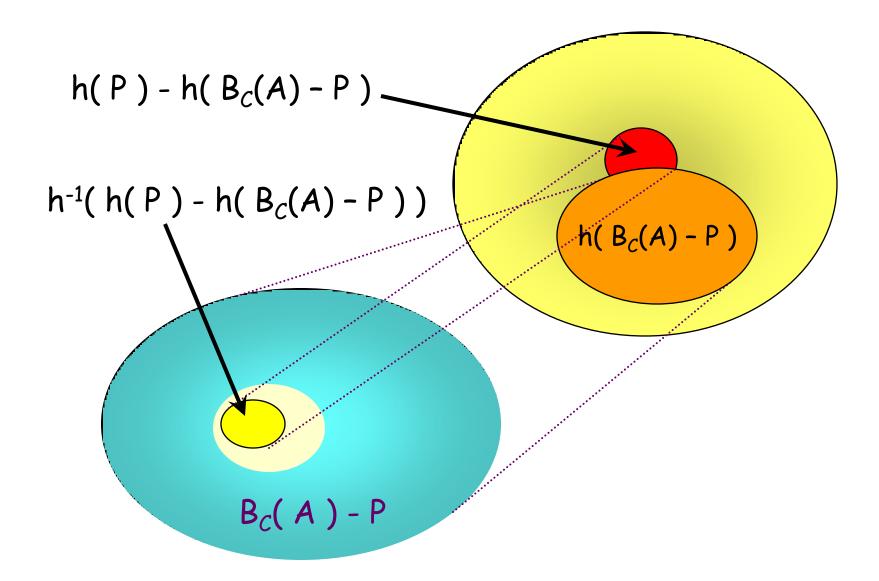
Building the Upper Bound



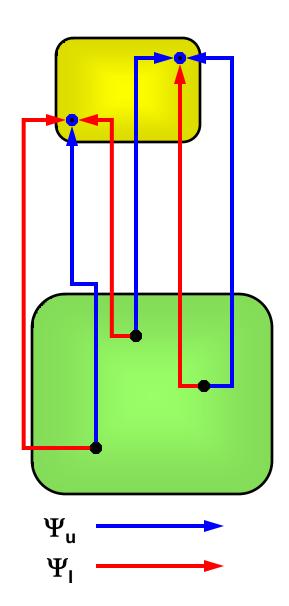
Building the Lower Bound

- We want $P \supseteq h^{-1}$ (lb of P)
- lacktriangle If x is not in P, then h(x) should not be in the lower bound of P
- ♦ Hence define
 - $\Psi_{l}(T) = h(P) h(B_{c}(A) P)$
- ◆There is a tighter lower bound

Building the Lower Bound



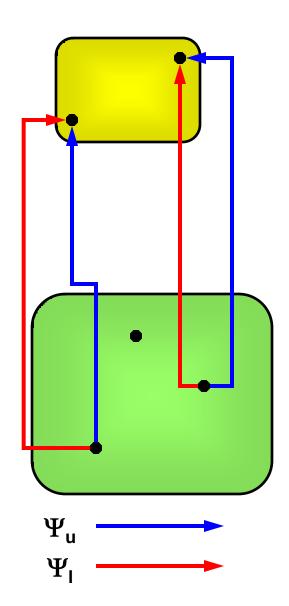
Conservative Approximations: Inverses



- ◆ Apply Ψ_u
- \bullet Apply Ψ_{I}
- ◆ Consider T such that

$$\Psi_{u}(T) = \Psi_{l}(T) = T'$$

Conservative Approximations: Inverses

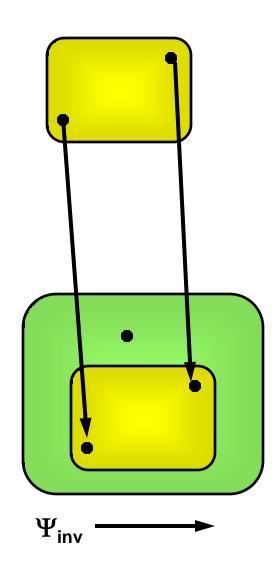


- lacktriangle Apply Ψ_{u}
- \bullet Apply Ψ_{I}
- ◆ Consider T such that

$$\Psi_{\mathsf{u}}(\mathsf{T}) = \Psi_{\mathsf{l}}(\mathsf{T}) = \mathsf{T}'$$

♦ Then $\Psi_{inv}(T') = T$

Conservative Approximations: Inverses

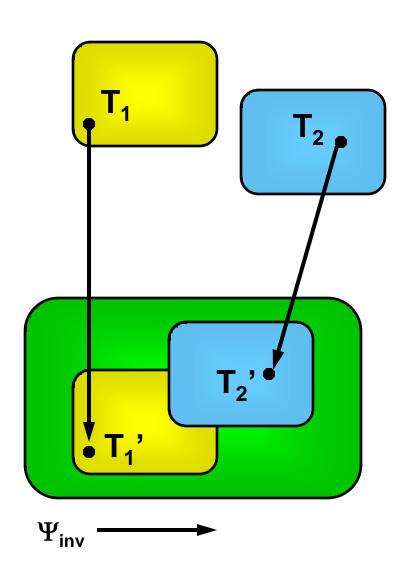


- ◆ Apply Ψ_u
- \bullet Apply Ψ_{I}
- Consider T such that

$$\Psi_{\mathsf{u}}(\mathsf{T}) = \Psi_{\mathsf{l}}(\mathsf{T}) = \mathsf{T}'$$

- ♦ Then $\Psi_{inv}(T') = T$
- ◆ Can be used to embed high-level model in low level

Combining MoCs



Want to compose T₁ and T₂ from different trace structure algebras

- ◆ Construct a third, more detailed trace algebra, with homomorphisms to the other two
- ◆ Construct a third trace structure algebra
- ◆ Construct cons. approximations and their inverses
- ◆ Map T₁ and T₂ to T₁' and T₂' in the third trace structure algebra
- \bullet Compose T_1' and T_2'

Conclusions

- Semantic foundations for the Metropolis meta-model
- All models of computation of importance "reside" in a unified framework
 - They may be better understood and optimized
- ◆ Trace Algebra used as the underlying mathematical machinery
 - Showed how to formalize a semantic domain for several models of computation
- Conservative approximations and their inverses used to relate different models