EE247
 Lecture 18

ADC Converters

- Sampling (continued)
- Sampling switch charge injection \& clock feedthrough
- Complementary switch
- Use of dummy device
- Bottom-plate switching
- Track \& hold
- T/H circuits
- T/H combined with summing/difference function
- T/H circuit incorporating gain \& offset cancellation
- T/H aperture uncertainty

Practical Sampling Issues

- Switch induced noise due to M1 finite channel resistance
- Clock jitter
- Finite $R_{s w} \rightarrow$ limited bandwidth \rightarrow finite acquisition time
- $R_{\text {sw }}=f\left(V_{i n}\right) \rightarrow$ distortion
\longrightarrow • Switch charge injection \& clock feedthrough

Sampling Switch Charge Injection \& Clock Feedthrough Switching from Track to Hold

- First assume V_{i} is a DC voltage
- When switch turns off \rightarrow offset voltage induced on C_{s}
- Why?

Sampling
 Switch Charge Injection

 Cross section view

Distributed channel resistance \& gate \& junction capacitances

- Channel \rightarrow distributed RC network formed between G,S, and D
- Channel to substrate junction capacitance \rightarrow distributed $\&$ voltage dependant
- Drain/Source junction capacitors to substrate \rightarrow voltage dependant
- Over-lap capacitance $C_{o v}=L_{D} x W x C_{o x}$, associated with G-S \& G-D overlap

Switch Charge Injection Slow Clock

- Slow clock \rightarrow clock fall time >> device speed
\rightarrow During the period (t - to $t_{\text {off }}$) current in channel discharges channel charge into low impedance signal source
- Only source of error \rightarrow Clock feedthrough from $C_{o v}$ to C_{s}
$\Delta V=-\frac{C_{o v}}{C_{o v}+C_{s}}\left(V_{i}+V_{t h}-V_{L}\right) \quad \underset{=}{=} C_{s}$
$\approx-\frac{C_{o v}}{C_{S}}\left(V_{i}+V_{t h}-V_{L}\right)$
$V_{\text {o }}=V_{i}+\Delta V$
$V_{o}=V_{i}+\Delta V$
$V_{o}=V_{i}-\frac{C_{o v}}{C_{s}}\left(V_{i}+V_{t h}-V_{L}\right)=V_{i}\left(1-\frac{C_{o v}}{C_{s}}\right)-\frac{C_{o v}}{C_{s}}\left(V_{t h}-V_{L}\right)$
$V_{o}=V_{i}(1+\varepsilon)+V_{o s}$
where $\varepsilon=-\frac{C_{o v}}{C_{s}} ; V_{\text {os }}=-\frac{C_{o v}}{C_{s}}\left(V_{\text {th }}-V_{L}\right)$

Switch Charge Injection \& Clock Feedthrough Slow Clock- Example

$C_{o v}^{\prime}=0.1 \mathrm{fF} / \mu \quad C_{o x}=9 f F / \mu^{2} \quad V_{t h}=0.4 V \quad V_{L}=0$
$\varepsilon=-\frac{C_{o v}}{C_{s}}=-\frac{10 \mu \times 0.1 \mathrm{fF} / \mu}{1 p F}=-.1 \%$
Allowing $\varepsilon=1 / 2 L S B \rightarrow$ ADCresolution $<\sim 9 b$ it

$V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{t h}-V_{L}\right)=-0.4 m \mathrm{~V}$

Switch Charge Injection \& Clock Feedthrough Fast Clock

- Sudden gate voltage drop \rightarrow no gate voltage to establish current in channel \rightarrow channel charge has no choice but to escape out towards S \& D

Switch Charge Injection \& Clock Feedthrough Fast Clock

Clock Fall-Time << Device Speed:

$$
\begin{aligned}
& \Delta V_{o}=-\frac{C_{o v}}{C_{o v}+C_{s}}\left(V_{H}-V_{L}\right)-\left(\frac{1}{2}\right) \times \frac{Q_{c h}}{C_{s}} \\
& \approx-\frac{C_{o v}}{C_{o v}+C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(\left(V_{H}-V_{i}-V_{t h}\right)\right)}{C_{s}} \\
& V_{o}=V_{i}(1+\varepsilon)+V_{o s} \\
& \text { where } \varepsilon=\frac{1}{2} \times \frac{W C_{o x} L}{C_{s}} \\
& V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(V_{H}-V_{t h}\right)}{C_{s}}
\end{aligned}
$$

- For simplicity it is assumed channel charge divided equally between $S \& D$
- Source of error \rightarrow channel charge transfer + clock feedthrough via $C_{o v}$ to C_{s}

Switch Charge Injection \& Clock Feedthrough Fast Clock- Example

$C_{o v}=0.1 \frac{f F}{\mu}, C_{o x}=9 \frac{f F}{\mu^{2}}, V_{t h}=0.4 V, V_{D D}=1.8 \mathrm{~V}, V_{L}=0$
$\varepsilon=1 / 2 \frac{W L C_{o x}}{C_{s}}=\frac{10 \mu \times 0.18 \mu \times 9 \mathrm{fF} / \mu^{2}}{1 p F}=1.6 \% \rightarrow \sim 5-$ bit

$V_{o s}=-\frac{C_{o v}}{C_{s}}\left(V_{H}-V_{L}\right)-\frac{1}{2} \times \frac{W C_{o x} L\left(V_{H}-V_{t h}\right)}{C_{s}}=-1.8 \mathrm{mV}-14.6 \mathrm{mV}=-16.4 \mathrm{mV}$

Switch Charge Injection \& Clock Feedthrough Example-Summary

Error function of:
\rightarrow Clock fall time
\rightarrow Input voltage level
\rightarrow Source impedance
\rightarrow Sampling capacitance size
\rightarrow Switch size
8- Clock fall/rise should be controlled not to be faster (sharper) than necessary

Switch Charge Injection
 Error Reduction

- How do we reduce the error?
\rightarrow Reduce switch size to reduce channel charge?
$\Delta V_{o}=-\frac{1}{2} \frac{Q_{c h}}{C_{s}} \downarrow$
$\tau=R_{\text {ON }} C_{s}=\frac{C_{s}}{\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t h}\right)} \uparrow \quad$ (note $: \frac{T_{s}}{2}=k \tau$)
Consider the figure of merit (FOM):
$F O M=\frac{1}{\tau \times \Delta V_{o}} \approx \frac{\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t h}\right)}{C_{s}} \times 2 \times \frac{C_{s}}{W C_{o x} L\left(\left(V_{H}-V_{i}-V_{t h}\right)\right)}$
$\rightarrow F O M \propto \mu / L^{2}$
* Reducing switch size increases $\tau \rightarrow$ increased distortion \rightarrow not a viable solution
* Small τ and small $\Delta \mathrm{V} \rightarrow$ use minimum chanel length (mandated by technology)
* For a given technology $\tau \times \Delta \mathrm{V}$ ~ constant

Sampling Switch Charge Injection \& Clock Feedthrough Summary

- Extra charge injected onto sampling capacitor @ switch device turn-off
-Channel charge injection
-Clock feedthrough to C_{s} via C_{ov}
- Issues due to charge injection \& clock feedthrough:
-DC offset induced on hold C
-Input dependant error voltage \rightarrow distortion
- Solutions:
-Slowing down clock edges as much as possible
-Complementary switch?
-Addition of dummy switches?
-Bottom-plate sampling?

Switch Charge Injection \& Clock Feedthrough Complementary Switch

- In slow clock case if area of $\mathrm{n} \& \mathrm{p}$ devices widths are equal $\left(W_{n}=W_{p}\right) \rightarrow$ effect of overlap capacitor for n \& p devices to first order cancel (cancellation accuracy depends on matching of $n \& p$ width and overlap length L_{D})
- Since in CMOS technologies $\mu_{n} \sim 2.5 \mu_{p}$ choice of $W_{n}=W_{p}$ not optimal from linearity perspective ($W_{p}>W_{\mathrm{n}}$ preferable)

Switch Charge Injection Complementary Switch

Fast Clock

$$
\begin{aligned}
\left|Q_{c h-n}\right| & =W_{n} C_{o x} L_{n}\left(V_{H}-V_{i}-\left|V_{t h-n}\right|\right) \\
\left|Q_{c h-p}\right| & =W_{p} C_{o x} L_{p}\left(V_{i}-V_{L}-\left|V_{t h-p}\right|\right) \\
\Delta V_{o} & \approx-\frac{1}{2}\left(\frac{\left|Q_{c h-n}\right|}{C_{s}}-\frac{\left|Q_{c h-p}\right|}{C_{s}}\right) \\
V_{o} & =V_{i}(1+\varepsilon)+V_{o s} \\
\varepsilon & \approx \frac{1}{2} \times \frac{W_{n} C_{o x} L_{n}+W_{p} C_{o x} L_{p}}{C_{s}}
\end{aligned}
$$

- In fast clock case
- To $1^{\text {st }}$ order, offset due to overlap caps cancelled for equal device width
- Input voltage dependant error worse!

Switch Charge Injection Dummy Switch

$Q_{1} \approx \frac{1}{2} Q_{c h}^{M 1}+Q_{o v}^{M 1}$
$Q_{2} \approx Q_{c h}^{M 2}+2 Q_{o v}^{M 2}$
For $W_{M 2}=\frac{1}{2} W_{M 1} \rightarrow Q_{2}=-Q_{1} \quad \& \quad Q_{o v}^{M 1}=2 Q_{o v}^{M 2}$

- Dummy switch same L as main switch but half W
- Main device clock goes low, dummy device gate goes high \rightarrow dummy switch acquires same amount of channel charge main switch needs to lose
- Effective only if exactly half of the charge stored in M1 is transferred to M2 (depends on input/output node impedance) and requires good matching between clock fall/rise

Switch Charge Injection Dummy Switch

- To guarantee half of charge goes to each side \rightarrow create the same environment on both sides
* Add capacitor equal to sampling capacitor to the other side of the switch + add fixed resistor to emulate input resistance of following circuit \rightarrow Issues: Degrades sampling bandwidth

Dummy Switch Effectiveness Test

- Dummy switch $\rightarrow \mathrm{W}=1 / 2 \mathrm{~W}_{\text {main }}$
- As Vin is increased Vc1-Vin is decreased \rightarrow channel charge decreased \rightarrow less charge injection
- Note large Ls \rightarrow good device area matching

Ref: L. A. Bienstman et al, " An Eight-Channel 8 13it Microprocessor Compatible NMOS D/A Converter with Programmable Scaling", IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980

Switch Charge Injection Differential Sampling

$V_{o+}-V_{o-}=V_{o d} \quad V_{i+}-V_{i-}=V_{i d}$
$V_{o c}=\frac{V_{o+}+V_{o-}}{2} \quad V_{i c}=\frac{V_{i+}+V_{i-}}{2}$
$V_{o+}=V_{i+}\left(1+\varepsilon_{1}\right)+V_{o s 1}$
$V_{o-}=V_{i-}\left(1+\varepsilon_{2}\right)+V_{o s 2}$
$V_{o d}=V_{i d}+V_{i d}\left(\varepsilon_{1}+\varepsilon_{2}\right) / 2+\left(\varepsilon_{1}-\varepsilon_{2}\right) V_{i c}+V_{o s 1}-V_{o s 2}$

- To $1^{\text {st }}$ order, offset terms cancel
- Note gain error ε still about the same
- Has the advantage of better immunity to noise coupling and cancellation of even order harmonics

Avoiding Switch Charge Injection Bottom Plate Sampling

- Switches M2 opened slightly earlier compared to M1
\rightarrow Injected charge by the opening of M2 is constant since its GS voltage is constant \& eliminated when used differentially
- Since C_{s} bottom plate is already open when M1 is opened \rightarrow No signal dependant charge injected on C_{s}

Flip-Around Track \& Hold

Charge Injection

- At the instant of transitioning from track to hold mode, some of the charge stored in sampling switch S1 is dumped onto C
- With "Bottom Plate Sampling", only charge injection component due to opening of S1 and is to first-order independent of v_{IN}
- Only a dc offset is added. This dc offset can be removed with a differential architecture

Flip-Around T/H

Flip-Around T/H

- S 1 is chosen to be an n-channel MOSFET
- Since it always switches the same voltage, it's onresistance, $R_{S 1}$, is signal-independent (to first order)
- Choosing $R_{S 1} \gg R_{S 1 A}$ minimizes the non-linear component of $R=R_{S 1 A}+R_{S 1}$
- Typically, S1A is a wide (much lower resistance than S1) \& constant V_{GS} switch
- In practice size of S1A is limited by the (nonlinear) S/D capacitance that also adds distortion
- If S1A's resistance is negligible \rightarrow delay depends only on S1 resistance
- S1 resistance is independent of $\mathrm{V}_{\mathbb{I N}} \rightarrow$ error due to finite time-constant \rightarrow independent of $\mathrm{V}_{\text {IN }}$

Differential Flip-Around T/H Choice of Sampling Switch Size

- THD simulated w/o sampling switch boosted clock $\rightarrow-45 \mathrm{~dB}$
- THD simulated with sampling switch boosted clock (see graph)

Ref: K. Vleugels et al, "A 2.5-V Sigma-Delta Modulator for Broadband Communications Applications " IEEE JSSC, VOL. 36, NO. 12, DECEMBER 2001, pp. 1887

Differential Flip-Around T/H

Offset voltage associated with charge injection of S11 \& S12 cancelled by differential nature of the circuit
During input sampling phase \rightarrow amp outputs shorted together
Ref: W. Yang, et al. "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 20011931

Differential Flip-Around T/H

- Gain=1
- Feedback factor=1

Differential Flip-Around T/H Issues: Input Common-Mode Range

- $\Delta \mathrm{V}_{\text {in-cm }}=\mathrm{V}_{\text {out_com }}-\mathrm{V}_{\text {sig_com }}$
\rightarrow Amplifier needs to have large input common-mode compliance

Input Common-Mode Cancellation

- Note: Shorting switch M3 added

Ref: R. Yen, et al. "A MOS Switched-Capacitor Instrumentation Amplifier," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER 19821008

Input Common-Mode Cancellation

Track mode (ϕ high)
$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{11}, \mathrm{~V}_{\mathrm{C} 2}=\mathrm{V}_{12}$
$V_{01}=V_{o 2}=0$

Hold mode (ϕ low)
$V_{01}+V_{02}=0$
$V_{01}-V_{o 2}=-\left(V_{11}-V_{12}\right)\left(C_{1} /\left(C_{1}+C_{3}\right)\right)$
\rightarrow Input common-mode level removed

Switched-Capacitor Techniques Combining

 Track \& Hold with Other Functions- T/H + Charge Redistribution Amplifier
- T/H \& Input Difference Amplifier
- T/H \& Summing Amplifier
- Differential T/H Combined with Gain Stage
- Differential T/H Including Offset Cancellation

T/H + Charge Redistribution Amplifier

Track mode: (S1, S3 \rightarrow on S2 \rightarrow off)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\text {os }}-\mathrm{V}_{\mathrm{IN}}, \mathrm{~V}_{\mathrm{C} 2}=0 \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{os}}
\end{aligned}
$$

T/H + Charge Redistribution Amplifier Hold Mode

$\mathrm{V}_{\mathrm{C} 1} \rightarrow \mathrm{~V}_{\mathrm{os}}$
$\Delta V_{C 1}=V_{\text {os }}-\left(V_{\text {os }}-V_{\text {IN }}\right)=V_{\text {IN }}$
$\Delta Q_{1}=C_{1} \Delta V_{C 1}=C_{1} V_{I N}$
$\Delta Q_{2}=C_{2} \Delta V_{C 2}=\Delta Q_{1}$
$\Delta v_{c 2}=\left(\frac{C_{1}}{C_{2}}\right) v_{c 1}=v_{c 2}$

Hold/amplify mode (S1, S3 \rightarrow off S2 \rightarrow on)
$\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{C} 2}+\mathrm{v}_{\mathrm{os}}=\left(\frac{\mathrm{c}_{1}}{\mathrm{C}_{2}}\right) \mathrm{v}_{\mathrm{IN}}+\mathrm{v}_{\mathrm{os}}$
\rightarrow Offset NOT cancelled, but not amplified
\rightarrow Input-referred offset $=\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right) \times \mathrm{V}_{\mathrm{OS}}$, \& often $\mathrm{C}_{2}<\mathrm{C}_{1}$

T/H \& Input Difference Amplifier

Sample mode:
(S1, S3 \rightarrow on S2 \rightarrow off) $\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\text {os }}-\mathrm{V}_{\mathrm{I} 1}, \mathrm{~V}_{\mathrm{C} 2}=0$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {os }}$

Input Difference Amplifier Cont'd

Subtract/Amplify mode (S1, S3 \rightarrow off S2 \rightarrow on)
During previous phase:
$\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\text {os }}-\mathrm{V}_{11}, \mathrm{~V}_{\mathrm{C} 2}=0$
$V_{C 1}=V_{0 S}-V_{12}$
$\Delta V_{C 1}=\left(V_{\text {os }}-V_{12}\right)-\left(V_{\text {os }}-V_{11}\right)=V_{11}-V_{12}$

$\Delta \mathrm{V}_{\mathrm{C} 2}=\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \Delta \mathrm{V}_{\mathrm{C} 1}=\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right)\left(\mathrm{V}_{11}-\mathrm{V}_{12}\right)$
$v_{0}=\left(\frac{C_{1}}{C_{2}}\right)\left(V_{11}-V_{12}\right)+v_{\text {os }}$
\rightarrow Offset NOT cancelled, but not amplified
\rightarrow Input-referred offset $=\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right) \times \mathrm{V}_{\mathrm{OS}}, \& \mathrm{C}_{2}<\mathrm{C}_{1}$

T/H \& Summing Amplifier

T/H \& Summing Amplifier Cont'd

Sample mode (S1, S3, S5 \rightarrow on S2, S4 \rightarrow off)
$V_{C 1}=V_{\text {os }}-V_{11}, V_{C 2}=V_{o s}-V_{13}, V_{C 3}=0$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {os }}$

T/H \& Summing Amplifier Cont'd

Differential T/H Combined with Gain Stage

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stage

 $\phi 1 \rightarrow$ High

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stage

- Gain=4C/C=4
- Input voltage common-mode level removed \rightarrow opamp can have low input common-mode compliance
- Amplifier offset NOT removed

Ref: S. H. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Including Offset Cancellation

- Operation during offset cancellation phase shown
- Auxilary inputs added with $\mathrm{A}_{\text {main }} / \mathrm{A}_{\text {aux }}=10$
- During offset cancellation phase:
-Aux. amp configured in unity-gain mode: Vout $=\mathrm{V}_{\text {os }}{ }^{\text {main }} \rightarrow$ offset stored on C_{AZ} \& canceled
Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930-938, December 1987.

Differential T/H Including Offset Cancellation Operational Amplifier

- Operational amplifier \rightarrow dual input folded-cascode opamp
- M3,4 auxiliary input, M1,2 main input
- To achieve 1 /10 gain ratio $\mathrm{W}_{\mathrm{M} 3,4}=1 / 10 \mathrm{x} \mathrm{W}_{\mathrm{M} 1,2}$ \& current sources are scaled by $1 / 10$
- M5,6,7 \rightarrow common-mode control
- Output stage \rightarrow dual cascode \rightarrow high DC gain

$$
V_{\text {out }}=g_{m 1,2} r_{o} V_{\text {in } 1}+g_{m 3,4} r_{o} V_{\text {in } 2}
$$

Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930-938, December 1987

Differential T/H Including Offset Cancellation Phase

- During offset cancellation phase AZ and S 1 closed \rightarrow main amplifier offset amplified by $g_{m 1} / g_{\mathrm{m} 2} \&$ stored on C_{AZ}
- Auxiliary amp chosen to have lower gain so that:

Aux. amp charge injection associated with opening of switch AZ \rightarrow reduced by $\mathrm{A}_{\text {aux }} / \mathrm{A}_{\text {main }}=1 / 10$
IInsignificant increase in power dissipation resulting from addition of aux. inputs

- Requires an extra auto-zero clock phase

Track \& Hold
 Aperture Time Error

Transition from track to hold:
Occurs when device turns fully off
$\rightarrow V_{C L K}=V_{\text {in }}+V_{T H}$
Sharp fall-time wrt signal change \rightarrow no aperture error

Ref: P. J. Lim and B. A. Wooley, "A high-speed sample-and-hold technique using a Miller hold capacitance," IEEE Journal of Solid-State Circuits, vol. 26, pp. 643-651, April 1991.

Track \& Hold Aperture Time Error

- Aperture error analysis applies to simple sampling network
- Bottom plate sampling \rightarrow minimizes aperture error
- Boosted clock \rightarrow reduces aperture error
\rightarrow Clock edge fall/rise trade-off between switch charge injection versus aperture error

Ref: P. J. Lim and B. A. Wooley, "A high-speed sample-and-hold technique using a Miller hold capacitance," IEEE Journal of Solid-State Circuits, vol. 26, pp. 643-651, April 1991

