EE247
Lecture 10

• Switched-capacitor filters (continued)
 – Switched-capacitor integrators
 • DDI & LDI integrators
 – Effect of parasitic capacitance
 – Bottom-plate integrator topology
 – Switched-capacitor resonators
 – Bandpass filters
 – Lowpass filters
 – Switched-capacitor filter design considerations
 • Termination implementation
 • Transmission zero implementation
 • Limitations imposed by non-idealities

Switched-Capacitor Integrator

Switched-Capacitor Integrator

Switched-Capacitor Integrator

Switched-Capacitor Integrator

Switched-Capacitor Integrator
Switched-Capacitor Integrator
Output Sampled on ϕ_1

\[Q_s[(n-1)Ts] = C_s V_i[(n-1)Ts] \]

\[Q_I[(n-1)Ts] = Q_I[(n-3/2)Ts] \]

\[Q_s[(n-1/2)Ts] = 0 \]

\[Q_I[(n-1/2)Ts] = Q_I[(n-1)Ts] + Q_s[(n-1)Ts] \]

\[Q_s[nTs] = C_s V_i[nTs] \]

\[Q_I[nTs] = Q_I[(n-1)Ts] + Q_s[(n-1)Ts] \]

Since $V_{out} = -Q_s/C_s$ & $V_i = Q_s/C_s$:

\[C_s V_{out}(nTs) = C_s V_{out}[(n-1)Ts] - C_s V_i[(n-1)Ts] \]
Switched-Capacitor Integrator
Output Sampled on ϕ_1

\[C_I \ V_o(nT_s) = C_I \ V_o((n-1)T_s) - C_s \ V_{in}((n-1)T_s) \]
\[V_o(nT_s) = V_o((n-1)T_s) - C_s \ V_{in}((n-1)T_s) \]
\[V_o(Z) = Z^{-1}V_o(Z) - Z^{-1}C_s \ V_{in}(Z) \]
\[\frac{V_o(Z)}{V_{in}} = -\frac{C_s}{C_I} \times \frac{Z^{-1}}{1-Z^{-1}} \]

DDI (Direct-Transform Discrete Integrator)

Switched-Capacitor Direct-Transform Discrete Integrator

\[\frac{V_o(z)}{V_{in}} = -\frac{C_s}{C_I} \times \frac{z^{-1}}{1-z^{-1}} \]
\[= -\frac{C_s}{C_I} \times \frac{1}{z-1} \]
DDI Switched-Capacitor Integrator

\[
\frac{V_o(z)}{V_{in}} = -\frac{C_s}{C_f} \times \frac{z^{-1} - \frac{1}{1 + z^{-1}}}{1 - z^{-1}} = -\frac{C_s}{C_f} \times \frac{z^{-1} - \frac{1}{1 + z^{-1}}}{1 - z^{-1}}
\]

since: \(\sin(\alpha) = \frac{e^{j\alpha} - e^{-j\alpha}}{2j} \)

\[
= -\frac{C_s}{C_f} \times \frac{1 - \frac{1}{2\sin(\alpha/2)}}{2\sin(\alpha/2)} \times e^{-j\alpha/2}
\]

Example: Mag. & phase error for:

1. \(f/f_s = 1/12 \) → Mag. error = 1% or 0.1dB
 - Phase error = 15 degree
 - \(Q_{in} = -3.8 \)

2. \(f/f_s = 1/32 \) → Mag. error = 0.16% or 0.014dB
 - Phase error = 5.6 degree
 - \(Q_{in} = -10.2 \)

DDI Integrator:
- magnitude error no problem
- phase error major problem
5th Order Low-Pass Switched Capacitor Filter
Built with DDI Integrators

Example:
5th Order Elliptic Filter
Singularities pushed towards RHP due to integrator excess phase

Switched Capacitor Filter
Build with DDI Integrator

Continuous-Time Prototype
Switched-Capacitor Integrator
Output Sampled on ϕ_2

Sample output $\frac{1}{2}$ clock cycle earlier
\rightarrow Sample output on ϕ_2

$\Phi_1 \rightarrow Q_s[(n-1)T_s] = C_s V_i[(n-1)T_s], \quad Q_i[(n-1)T_s] = Q_i[(n-3/2)T_s]$

$\Phi_2 \rightarrow Q_s[(n-1/2)T_s] = 0, \quad Q_i[(n-1/2)T_s] = Q_i[(n-3/2)T_s] + Q_s[(n-1)T_s]$

$\Phi_1 \rightarrow Q_s[nT_s] = C_s V_i[nT_s], \quad Q_i[nT_s] = Q_i[(n-1)T_s] + Q_s[(n-1)T_s]$

$\Phi_2 \rightarrow Q_s[(n+1/2)T_s] = 0, \quad Q_i[(n+1/2)T_s] = Q_i[(n+1/2)T_s] + Q_s[nT_s]$
\[Q_I[(n+1/2)T_s] = Q_I[(n-1/2)T_s] + Q_s[nT_s] \]
\[V_{o2} = -\frac{Q_I}{C_I} & V_I = \frac{Q_s}{C_s} \]

Using the z operator rules:
\[C_I V_{o2}z^{1/2} = C_I V_{o2}z^{-1/2} - C_s V_i \]

Switched-Capacitor Integrator

LDI Switched-Capacitor Integrator

LDI (Lossless Discrete Integrator) \(\rightarrow \)
same as DDI but output is sampled \(\frac{1}{2} \) clock cycle earlier

\[\frac{V_{o2}(z)}{V_{in}} = -\frac{C_s}{C_I} \times \frac{z^{-1/2}}{1-z^{-1}} \]

\[= -\frac{C_s}{C_I} \times \frac{\frac{1}{2} e^{j\omega T / 2}}{1 - e^{j\omega T / 2}} \]

\[= \frac{C_s}{C_I} \times \frac{1}{2 \sin(j\omega T / 2)} \]

For signals at frequencies \(<<\) sampling freq.

\(\Rightarrow \) Magnitude error negligible

No Phase Error!
Switched-Capacitor Filter
Built with LDI Integrators

\[|H(j\omega)| \]

Zeros Preserved

\[f_s/2 \quad f_s \quad 2f_s \quad f \]

Switched-Capacitor Integrator
Parasitic Capacitor Sensitivity

Effect of parasitic capacitors:
1. \(C_{p1} \) - driven by opamp o.k.
2. \(C_{p2} \) - at opamp virtual gnd o.k.
3. \(C_{p3} \) – Charges to \(V_{in} \) & discharges into \(C_i \)

\[\text{Problem parasitic capacitor sensitivity} \]
Parasitic Insensitive
Bottom-Plate Switched-Capacitor Integrator

Sensitive parasitic cap. \(C_{p1} \) → rearrange circuit so that \(C_{p1} \) does not charge/discharge

\[\phi_1 = 1 \rightarrow C_{p1} \text{ grounded} \]

\[\phi_2 = 1 \rightarrow C_{p1} \text{ at virtual ground} \]

Solution: Bottom plate capacitor integrator

Note:
Different delay from \(Vi^+ \) & \(Vi^- \) to either output
\(\rightarrow \) Special attention needed for input/output connections to ensure LDI realization

Output/Input

<table>
<thead>
<tr>
<th>(Vi^+) on (\phi_1)</th>
<th>(Vi^-) on (\phi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{C_s}{C_f} \frac{z^{-1}}{1-z^{-1}})</td>
<td>(\frac{C_s}{C_f} \frac{z^{-1/2}}{1-z^{-1/2}})</td>
</tr>
<tr>
<td>(\frac{C_s}{C_f} \frac{z^{-1}}{1-z^{-1}})</td>
<td>(-\frac{C_s}{C_f} \frac{1}{1-z^{-1}})</td>
</tr>
</tbody>
</table>
Bottom Plate Switched-Capacitor Integrator
z-Transform Model

\[z^{-1/2} \]

\[z^{-1/2} \]

Input/Output z-transform

Vi+

Cs

Vi-

\(\phi_1 \)

\(\phi_2 \)

Vo1

Vo2

LDI

Delay around integrator loop is \((z^{-1/2} \cdot z^{1/2} = 1) \) \(\Rightarrow \) LDI function
Switched-Capacitor LDI Resonator

\[\omega_1 = \frac{1}{R_{eq} C_2} f_s \frac{C_1}{C_2} \]
\[\omega_2 = \frac{1}{R_{eq} C_4} f_s \frac{C_3}{C_4} \]

Fully Differential Switched-Capacitor Resonator

• Note: Two sets of S.C. bottom plate networks for each differential integrator
Switched-Capacitor LDI Bandpass Filter
Utilizing Continuous-Time Termination

\[a_0 = f_s \times \frac{C_3}{C_4} = f_s \times \frac{C_1}{C_2} \]
\[Q = \frac{C_2}{C_4} \]

\[f_0 = \frac{1}{2\pi} f_s \times \frac{C_1}{C_2} \]
\[\Delta f = \frac{f_0}{Q} = \frac{1}{2\pi} f_s \times \frac{C_1 C_Q}{C_2 C_4} \]

Both accurately determined by cap ratios & clock frequency
Fifth Order All-Pole LDI Low-Pass Ladder Filter
Complex Conjugate Terminations

Termination Resistor

Complex conjugate terminations (alternate phase switching)

Sixth-Order Elliptic LDI Bandpass Filter

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain

• Opamp finite bandwidth

• Finite slew rate of the opamp

• Non-linearity associated with opamp output/input characteristics

Effect of Opamp Non-Idealities
Finite DC Gain

\[H(s) = -f_s \frac{C_s}{C_I} \frac{I}{s + f_s \frac{C_s}{C_I} \frac{L}{a}} \]

\[H(s) = -\frac{a_0}{s + a_0 \frac{s}{a}} \]

\[\Rightarrow Q_{intg} = a \]

- Finite DC gain same effect in S.C. filters as for C.T. filters
- If DC gain not high enough → lowing of overall Q & droop in passband

Effect of Opamp Non-Idealities
Finite Opamp Bandwidth

Assumption-
Opamp → does not slew (will be revisited)
Opamp has only one pole only → exponential settling

Effect of Opamp Non-Idealities

Finite Opamp Bandwidth

\[H_{\text{actual}}(Z) = H_{\text{ideal}}(Z) \left[1 - e^{-k + \frac{1}{2} \pi} \frac{C_l}{C_l + C_s} Z^{-1} \right] \]

where \(k = \pi \times \frac{f_t}{C_1 f_s} \)

\(f_t \rightarrow \text{Opamp unity-gain-frequency} \), \(f_s \rightarrow \text{Clock frequency} \)

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

Magnitude deviation due to finite opamp unity-gain-frequency

Example: 2nd order bandpass with Q=25

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

For 1dB magnitude response deviation:

1. $f_c/f_s=1/12$
 $f_c/f_t~0.04$
 $f_t>25f_c$

2. $f_c/f_s=1/32$
 $f_c/f_t~0.022$
 $f_t>45f_c$

3. Cont.-Time
 $f_c/f_t=1/700$
 $f_t>700f_c$

Example:

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

Critical frequency deviation due to finite opamp unity-gain-frequency

Example: 2nd order filter

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

Example:
For maximum critical frequency shift of <1%
1. $f_c/f_s=1/32$
 $f_c/f_t=0.028$
 $\Rightarrow f_t > 36f_c$
2. $f_c/f_s=1/12$
 $f_c/f_t=0.046$
 $\Rightarrow f_t > 22f_c$
3. Active RC
 $f_c/f_t=0.008$
 $\Rightarrow f_t > 125f_c$

Opamp Bandwidth Requirements for Switched-Capacitor Filters Compared to Continuous-Time Filters

- Finite opamp bandwidth causes phase lag at the unity-gain frequency of the integrator for both type filters
 \Rightarrow Results in negative intg. Q & thus increases overall Q and gain at results in peaking in the passband in the frequency range of interest
- For given filter requirements, opamp bandwidth requirements much less stringent for S.C. filters compared to cont. time filters
 \Rightarrow Lower power dissipation for S.C. filters (at low freq.s only due to other effects)
- Finite opamp bandwidth causes down shifting of critical frequencies in both type filters
 - Since cont. time filters are usually tuned \Rightarrow tuning accounts for frequency deviation
 - S.C. filters are untuned and thus frequency shift could cause problems specially for narrow-band filters
Sources of Distortion in Switched-Capacitor Filters

- Opamp output/input transfer function non-linearity- similar to cont. time filters
- Capacitor non-linearity, similar to cont. time filters
- Distortion induced by finite slew rate of the opamp
- Distortion incurred by finite setting time of the opamp
- Distortion due to switch clock feed-through and charge injection

What is Slewing?

Assumption:
Integrator opamp is a simple class A transconductance type differential pair with fixed tail current, $I_{ss}=\text{const.}$
What is Slewing?

|\[|V_{Cs}| > V_{max}\] | Output current constant \[I_o = \frac{I_{ss}}{2}\] or \[-\frac{I_{ss}}{2}\]
|\[\Rightarrow\] | Constant current charging/discharging \[C_f\]; \[V_o\] ramps down/up | Slewing

After \[V_{Cs}\] is discharged enough to have:
|\[|V_{Cs}| < V_{max}\] | \[I_o = \frac{gm}{C_f} V_{Cs}\] | Exponential or over-shoot settling

Distortion Induced by Opamp Finite Slew Rate

Multiple pole settling

One pole settling
Ideal Switched-Capacitor Output Waveform

ϕ_1, ϕ_2

ϕ_2, High \rightarrow Charge transferred from C_s to C_I

Slew Limited Switched-Capacitor Integrator

Output Slewing & Settling
Distortion Induced by Finite Slew Rate of the Opamp

Distortion Induced by Opamp Finite Slew Rate

- Error due to exponential settling changes linearly with signal amplitude
- Error due to slew-limited settling changes non-linearly with signal amplitude (doubling signal amplitude X4 error)

→ For high-linearity need to have either high slew rate or non-slewing opamp

\[H_D = \frac{V_o}{S_0 T_s} \frac{8 (\sin \frac{a_0 T_s}{2})^2}{\pi k (k^2 - 4)} \]

\[H_D = \frac{V_o}{S_0 T_s} \frac{8 (\sin \frac{a_0 T_s}{2})^2}{f_0 << f_s \rightarrow HD_3 = \frac{8 \pi V_o T_s f_s^2}{75 S_0 f_s}} \]

Example:
Slew Related Harmonic Distortion

\[HD_3 = \frac{V_o}{S_r T_s} \left(\frac{\sin \left(\frac{a_0 T_s}{2} \right)}{15\pi} \right) \]

\[HD_3 = \frac{8\pi V_o f_o^2}{15S_r f_s} \]

Switched-capacitor filter with 4kHz bandwidth, \(f_s = 128kHz, S_r = 1V/\mu \text{sec}, V_o = 3V \)

Distortion Induced by Finite Slew Rate of the Opamp

- Note that for a high order switched capacitor filter \(\rightarrow \) only the last stage slewing will affect the output linearity (as long as the previous stages settle to the required accuracy)
 - Can reduce slew limited linearity by using an amplifier with a higher slew rate \textit{only} for the last stage
 - Can reduce slew limited linearity by using class A/B amplifiers
 - Even though the output/input characteristics is non-linear as long as the DC open-loop gain is high, the significantly higher slew rate compared to class A amplifiers helps improve slew rate induced distortion

- In cases where the output is sampled by another sampled data circuit (e.g. an ADC or a S/H) \(\rightarrow \) no issue with the slewing of the output as long as the output settles to the required accuracy & is sampled at the right time
Sources of Noise in Switched-Capacitor Filters

- Opamp Noise
 - Thermal noise
 - \(1/f \) (flicker) noise
- Thermal noise associated with the switching process \((kT/C)\)
 - Same as continuous-time filters
- Precaution regarding aliasing of noise required

Switched-Capacitor Filter Application
Example: Voice-Band Codec (Coder-Decoder) Chip

CODEC Transmit Path
Lowpass Filter Frequency Response

Note: \(f_s = 128\text{kHz} \)

CODEC Transmit Path
Highpass Filter

Note: \(f_s = 8\text{kHz} \)
Low Q bandpass ($Q < 1$) filter shape → Implemented with lowpass followed by highpass

CODEC Transmit Path

Clocking & Anti-Aliasing Scheme

First filter (1st order RC type) performs anti-aliasing for the next S.C. biquad

The 1st & 2nd stage filters form 3rd order elliptic LPF with corner frequency @ 32kHz → Anti-aliasing for the next lowpass filter

The stages prior to the high-pass perform anti-aliasing for high-pass

Notice gradual lowering of clock frequency → Ease of anti-aliasing
SC Filter Summary

- Pole and zero frequencies proportional to:
 - Sampling frequency f_s
 - Capacitor ratios
 - High accuracy and stability in response
 - Long time constants realizable without requiring large value R
- Compatible with transconductance amplifiers
 - Reduced circuit complexity, power dissipation
- Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)

Issue: Sampled-data filters require anti-aliasing prefiltering

Switched-Capacitor Filters versus Continuous-Time Filter Limitations

Considering overall effects of:
- Opamp finite slew rate
- Opamp finite unity-gain-bandwidth
- Opamp settling issues
- Clock feedthru
- Switch+ sampling cap. finite time-constant

\rightarrow Limited switched-capacitor filter performance frequency range
Summary

Filter Performance versus Filter Topology

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Max. Usable Bandwidth</th>
<th>SNDR</th>
<th>Freq. tolerance w/o tuning</th>
<th>Freq. tolerance + tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opamp-RC</td>
<td>~10MHz</td>
<td>60-90dB</td>
<td>+-30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-C</td>
<td>~5MHz</td>
<td>40-60dB</td>
<td>+-30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Opamp-MOSFET-RC</td>
<td>~5MHz</td>
<td>50-90dB</td>
<td>+-30-50%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Gm-C</td>
<td>~100MHz</td>
<td>40-70dB</td>
<td>+-40-60%</td>
<td>1-5%</td>
</tr>
<tr>
<td>Switched Capacitor</td>
<td>~10MHz</td>
<td>40-90dB</td>
<td><<1%</td>
<td></td>
</tr>
</tbody>
</table>