EE247
Lecture 2

» Material covered today:
— Nomenclature
— Filter specifications
¢ Quality factor
* Frequency characteristics
« Group delay
— Filter types
* Butterworth
» Chebyshev |
¢ Chebyshev II
« Elliptic
* Bessel
— Group delay comparison example
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Nomenclature
Filter Types
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Filter Specifications

» Frequency characteristics (lowpass filter):
— Passband ripple (Rpass)
— Cutoff frequency or -3dB frequency
— Stopband rejection
— Passband gain
» Phase characteristics:
— Group delay
*  SNR (Dynamic range)
» SNDR (Signal to Noise+Distortion ratio)

» Linearity measures: IM3 (intermodulation distortion), HD3
(harmonic distortion), [IP3 or OIP3 (Input-referred or output-
referred third order intercept point)

» Power/pole & Areal/pole
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Lowpass Filter Frequency Characteristics
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Quality Factor (Q)

» The term Quality Factor (Q) has different definitions:
— Component quality factor (inductor & capacitor

Q

— Pole quality factor
— Bandpass filter quality factor

* Next 3 slides clarifies each
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Component Quality Factor (Q)

e For any component with a transfer function:

4= R 1)

* Quality factor is defined as:
— X(W) Energy Stored

Q= R(w) ® Average Power Dissipation Perunittime
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Inductor & Capacitor Quality Factor

Inductor Q :
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Pole Quality Factor
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Bandpass Filter Quality Factor (Q)
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What is Group Delay?
Consider a continuous time filter with s -domain transfer function G(s):
jq(w
G(w) ©° 1/zG(jW)1/z§Jq( )

Let us apply a signal to the filter input composed of sum of two
sinewaves at slightly different frequencies (Dw<<w):

vin(t) = Agsin(wt) + A,sin[(w+Dw) ]
The filter output is:
Vourlt) = A, ¥G({w)¥esin[wi+q(w)] +

A, VG[ j(w+Dw)Jvzsin[(w+Dw)t+ g (w+Dw)]
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What is Group Delay?

Vourlt) = A, vGS(wsin fw [ 1+ T ]}

+ A, VAG[ j(w+Dw)]¥sin {(W+DW) [t+"q(w+Dw) ]}

, W+Dw
. Dw Dw 12 g
Since — then [PW ;
w <<l w | 20
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What is Group Delay?
Signal Magnitude and Phase Impairment

Vour(t) = A; %G(jw)¥ssin { [t + ]} +

+ A, YG[ j(w+Dw)]¥sin { (w+Dw) [t + ]}
-

» Ifthe second term in the phase of the 2™ sinwave is non-zero, then the
filter's output at frequency w+Dwis time-shifted differently than the
filter's output at frequency w
- “Phase distortion”

« Ifthe second term is zero, then the filter's output at frequency w+Dw
and the output at frequency w are each delayed in time by -g(w)/w

* tpp ° -q(w)/w is called the “phase delay’ and has units of time
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What is Group Delay?
Signal Magnitude and Phase Impairment

« Phase distortion is avoided only if:

e Clearly, if g(w)=kw, k a constant, - no phase distortion
« This type of filter phase response is called “linear phase”
—>Phase shift varies linearly with frequency

* tgr© -dg(w)/dwis called the “group delay” and also has units
of time. For a linear phase filter tgg © tpp =k

-2 tgr=tpp iIMplies linear phase
* Note: Filters with gq(w)=kw+c are also called linear phase filters, but
they're not free of phase distortion

EECS 247 Lecture 2: Filters © ©2004 HK. Page13

What is Group Delay?
Signal Magnitude and Phase Impairment

If tor=tpp = NO phase distortion

Vourtlt) = +
+ A, VG[ j (w+Dw)Jasin [(W+DW) (t - tGR)]
If alsoVG( jwy=YG[ j(w+Dw)]Y2for all input frequencies within

the signal-band, Vo7 is a scaled, time-shifted replica of the
input, with no “signal magnitude distortion” :

In most cases neither of these conditions are realizable exactly
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Summary
Group Delay

« Phase delay is defined as:

tpp® -qW/w [time]
* Group delay is defined as :
ter© -dg(wy/dw [time]

* If g(w)=kw, k a constant, - no phase distortion

» Foralinear phase filter t ;3 ° t o =k
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Filter Types
Butterworth Lowpass Filter
0

o
Maximally flat amplitude s, N\
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Example: 5th Order Butterworth filter
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Butterworth Lowpass Filter

» All poles AjW
. P_oles chated on the unit _w—f——_ s-plane
circle with equal angles s, AN
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Example: 5th Order Butterworth filter
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Filter Types
Chebyshev | Lowpass Filter
— o o
* Chebysheuv I filter z X
[}
— Equal-ripple passband 3 2 \
— Sharper transition band = AN
compared to Butterworth =
— Poorer group delay AN
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Normalized Frequency
Example: 5th Order Chebyshev filter
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Chebyshev | Lowpass Filter Characteristics

All poles

Poles located on an ellipse

inside the unit circle

Allowing more ripple in the

passband:

=>Narrower transition band

= Sharper cut-off

=>Higher pole Q
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= Chebyshev | LPF 3dB passband ripple
s Chebyshev | LPF 0.1dB passbandripple
Example: 5th Order Chebyshev | Filter
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Chebyshev Il filter

— Ripple instopband

— Sharper transition
band compared to

Butterworth

— Passband group
delay superior to

Chebyshev |

Filter Types
Cheybshev Il Lowpass
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Example: 5th Order Chebyshev 11 filter
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Filter Types
Cheybshev Il Lowpass

$w
Both poles & zeros
— No. of polesn ®
— No. of zerosn-1 s-plane
Poles located both inside Lk
& outside of the unit circle & i T
Zeros located on jw axis v b
Ripple in the stopband AN b
only o 1S
\\ /‘
. o
S *_ [
®
Example: |
5th Order oS
Chebyshev Il Filter ¢ 8LZe05
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Filter Types
Elliptic Lowpass Filter
Elliptic filter ) , \
— Ripple in passband § \\
— Ripple in the stopband g
— Sharper transition band s .
compared to Butterworth & i \
both Chebyshevs 0
— Poorer group delay 0
(3
g -200
Y N
@
&
-400

. 2
Normalized Frequency
Example: 5th Order Elliptic filter
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Filter Types
Elliptic Lowpass Filter

Both poles & zeros

— No. of polesn

— No. of zeros n-1
Zeros located on jw axis
Sharp cut-off

=>Narrower transition
band

=Pole Q higher
compared to the
previous filters

s
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Example: 5th Order Elliptic Filter
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Filter Types
Bessel Lowpass Filter

Bessel
— All'poles

— Maximally flat group
delay

— Poor amplitude
attenuation

— Poles outside unit circle
(s-plane)
— Relatively low Q poles

/
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Example: 5th Order Bessel filter
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Filter Types

Comparison of Various LPF Magnitude Response
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All 5th order filters with same corner freq. Butterworth e
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Filter Types

Comparison of Various LPF Singularities

= Poles Bessel

» Poles Butterworth
Poles Elliptic

« Zeros Elliptic

= PolesChebyshev | 0.1dB

4jw
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Comparison of Various LPF Groupdelay
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Curve 8. Group-delay characteristics for Chebyshev filter with 0.5 B ripple.

Ref: A. Zverev, Handbook of filter synthesis, Wiley, 1967.
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Group Delay Comparison
Example

» Lowpass filter with 100kHz corner frequency
» Chebyshev | versus Bessel
— Both filters 4" order- same -3dB point
— Passband ripple of 1dB allowed for Chebyshev |
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Magnitude Response

Bode Magnitude Diagram

Magnitude (dB)
& I @ ) N
o (@} () o (o]
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14

Group Delay

Group Delay [ms]

—— 4thOrd. Chebychev 1
4th Ord. Bessel

10°
Frequency [Hz]
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Normalized Group Delay
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Step Response
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Intersymbol Interference (1SI)

IS = Broadening of pulses resulting in interference between successive transmitted
pulses
Example: Simple RC filter

v.,:-—.u,—l—a Vou
I

L VaVaUaAYA L 'F/"l
a FEONING AN
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Pulse Broadening
Bessel versus Chebyshev

Input
1) }Jtput .
05
05
° 0]
0.5
05
) \Y%
e T 1r 13 17 15 16 7 L& Is 15 : 1 P P N N N
10" 11 12 1.3 14 1.5 16 17 1.8 19
8th order Bessel 4th order Chebyshev |

Chebyshev has more pulse broadening compared to Bessel > More ISl
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Response to Random Data
Chebyshev versus Bessel

111101111100101000010001011110111000100:

Input Signal: [
130kHz max. =
signal spectra density o

i
0.5 I\l\
1111011111( 11( 00(“
U v
-0.5h
B
02 04 06 08 1 12 1.4 ) 02 04 06 08

4thoorder Bessel 4th order Chebyshev i

111 ﬂwﬂé)l
V U&

-4
4

1
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Measure of Signal Degradation
Eye Diagram

111011111001100010111100111...
/"\VM /V\VI\ ,\_’\\—JA\/A‘

Eye diagram is a useful graphical illustration for signal degradation
Consists of many overlaid traces of a signal using an oscilloscope
where the symbol timing serves as the scope trigger
It is a visual summary of all possible intersymbol interference
waveforms

— The vertical opening = immunity to noise

— Horizontal opening - timing jitter
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Magnitude (dB)

Measure of Signal Degradation

Eye Diagram
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Random data with max. power spectral density of:

— 50kHz

— 100kHz

— 130kHz
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Eye Diagram
Chebyshev versus Bessel

Input Signal N
Random data ”
maximum power =
spectral density > 130kHz .

4th Order Bessel

12 1s_ 14 15 15 17

4th order Bessel 4th order Chebyshev |-
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Eye Diagrams

70%
ye gpenin

K

Time

Time x10

Random data maximum power spectral density - 50kHz
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Eye Diagrams

11 12 13 14 15 16 17 18 19 2
Time s
x10' x10°

Random data maximum power spectral density - 100kHz
Filter with constant group delay = More open eye > Lower BER (bit-error-rate)
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Summary
Filter Types

— Filters with high signal attenuation per pole =
poor phase response
— For a given signal attenuation requirement of
preserving constant groupdelay ->Higher order
filter
« In the case of passive filters = higher component count
« Case of integrated active filters = higher chip area &
power dissipation
— In cases where filter is followed by ADC and DSP

« Possible to digitally correct for phase non-linearities
incurred by the analog circuitry by using phase equalizers
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Summary
Filter Types

 Filters with high signal attenuation per pole - poor phase
response

» For a given signal attenuation requirement of preserving
constant groupdelay > Higher order filter

— In the case of passive filters = higher component
count

— Case of integrated active filters - higher chip area &
power dissipation
* In cases where filter is followed by ADC and DSP
—>possible to digitally correct for phase non-linearities
incurred by the analog circuitry by using digital phase
equalizers
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RLC Filters
*Bandpass filter:
R Vo
Vo - 'R§C' VmA@L & c
\H_?ﬂ%’gsw\/g i EE 1

Wo=1/4JLC
- -_R
Q—WORC—WO
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RLC Filters

*Design a bandpass filter with:
*Center frequency of 1kHz
*Qof 20

*Assume that the inductor has series R resulting in an
inductor Q of 40
*What is the effect of finite inductor Q on the overal Q?
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RLC Filters
Effect of Component Finite Q

Qe S el
it oideal
Qfit Qldeal Qnd. |,

Q=20 (ideal L)

@ .3 Q=13.3 (QL=40)
i
=
=
B
= -9

12

085k 1K 1 05K 11K
trequenoy{Hz2}

=Component Q must be much higher compared
to desired filter Q
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RLC Filters

Question:
Can RLC filters be integrated on-chip?
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Monolithic Inductors
Feasible Quality Factor & Value
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m ITHI 1761
Indisetames (i)

= Feasible monalithic inductor in CMOS tech. <10nH with Q <7

«Ref: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999
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Monolithic LC Filters

* Monolithic inductor in CMOS tech.
— L<10nH with Q<7

* Max. capacitor
— C< 10pF

=L C filters in the monolithic form feasible:

- freq >500MHz
- Only low quality factor filters

Learn more in EE242
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Monolithic Filters

» Desirable to integrate filters with critical frequencies
<< 500MHz

» Per previous slide LC filters not a practical option in
the integrated form

* Good alternative:

=Integrator based filters
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