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EE247 
Lecture 2

• Material covered today:
– Nomenclature
– Filter specifications 

• Quality factor
• Frequency characteristics
• Group delay

– Filter types
• Butterworth
• Chebyshev I
• Chebyshev II
• Elliptic
• Bessel

– Group delay comparison example
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Nomenclature
Filter Types

( )ωjH( )ωjH

Lowpass Highpass Bandpass Band-reject
(Notch)

ω ω ω

Provide frequency selectivity

( )ωjH( )ωjH

ω ω

All-pass

( )ωjH

Phase shaping 
or equalization



EECS 247 Lecture 2:  Filters © © 2004 H.K.  Page3

Filter Specifications

• Frequency characteristics (lowpass filter):
– Passband ripple (Rpass)
– Cutoff frequency or -3dB frequency 
– Stopband rejection
– Passband gain

• Phase characteristics:
– Group delay

• SNR (Dynamic range)
• SNDR (Signal to Noise+Distortion ratio)
• Linearity measures: IM3 (intermodulation distortion), HD3 

(harmonic distortion), IIP3 or OIP3 (Input-referred or output-
referred third order intercept point)

• Power/pole & Area/pole
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Quality Factor (Q)

• The term Quality Factor (Q) has different definitions:
– Component quality factor (inductor & capacitor 

Q)
– Pole quality factor
– Bandpass filter quality factor

• Next 3 slides clarifies each
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Component Quality Factor (Q)

• For any component with a transfer function:

• Quality factor is defined as:
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Inductor & Capacitor Quality Factor

• Inductor Q :

• Capacitor Q :
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Pole Quality Factor
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Bandpass Filter Quality Factor (Q) 
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• Consider a continuous time filter with s -domain transfer function G(s):

• Let us apply a signal to the filter input composed of sum of two
sinewaves at slightly different frequencies (∆ω<<ω):

• The filter output is:

What is Group Delay?

vIN(t) = A1sin(ωt) + A2sin[(ω+∆ω) t]

G(jω)  ≡ G(jω)e
jθ(ω)

vOUT(t) = A1 G(jω) sin[ωt+θ(ω)] + 

A2 G[ j(ω+∆ω)] sin[(ω+∆ω)t+ θ(ω+∆ω)]
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What is Group Delay?

{ ]}[vOUT(t) = A1 G(jω) sin ω t + 
θ(ω)

ω +
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What is Group Delay?
Signal Magnitude and Phase Impairment

{ ]}[vOUT(t) = A1 G(jω) sin ω t + 
θ(ω)

ω +

{ ]}[+ A2 G[ j(ω+∆ω)]sin (ω+∆ω) t +
dθ(ω)
dω

θ(ω)
ω +

θ(ω)
ω-( )∆ω

ω

• If the second term in the phase of the 2nd sinwave is non-zero, then the 
filter’s output at frequency ω+∆ω is time-shifted differently than the 
filter’s output at frequency ω
à “Phase distortion”

• If the second term is zero, then the filter’s output at frequency ω+∆ω
and the output at frequency ω are each delayed in time by -θ(ω)/ω

• τPD ≡ -θ(ω)/ω is called the “phase delay” and has units of time
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• Phase distortion is avoided only if:

• Clearly, if θ(ω)=kω, k a constant, à no phase distortion
• This type of filter phase response is called “linear phase”

àPhase shift varies linearly with frequency
• τGR ≡ -dθ(ω)/dω is called the “group delay ” and also has units 

of time. For a linear phase filter τGR ≡ τPD =k 
à τGR= τPD implies linear phase

• Note: Filters with θ(ω)=kω+c are also called linear phase filters, but 
they’re not free of phase distortion

What is Group Delay?
Signal Magnitude and Phase Impairment

dθ(ω)
dω

θ(ω)
ω- = 0
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What is Group Delay?
Signal Magnitude and Phase Impairment

• If τGR= τPD à No phase distortion

[ )](vOUT(t) = A1 G(jω) sin ω t - τGR +

[+ A2 G[ j(ω+∆ω)] sin (ω+∆ω) )]( t - τGR

• If  alsoG( jω)=G[ j(ω+∆ω)] for all input frequencies within 
the signal-band, vOUT is a scaled, time-shifted replica of the 
input, with no “signal magnitude distortion” :

• In most cases neither of these conditions are realizable exactly
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• Phase delay is defined as:
τPD ≡ -θ(ω)/ω [ time]

• Group delay is defined as :
τGR ≡ -dθ(ω)/dω [time]

• If θ(ω)=kω, k a constant, à no phase distortion

• For a linear phase filter τGR ≡ τPD =k

Summary
Group Delay
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Filter Types 
Butterworth Lowpass Filter

• Maximally flat amplitude 
within the filter passband

• Moderate phase distortion
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Butterworth Lowpass Filter

• All poles

• Poles located on the unit 
circle with equal angles

s-plane

jω

σ

Example: 5th Order Butterworth filter
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Filter Types 
Chebyshev I Lowpass Filter

• Chebyshev I filter
– Equal-ripple passband
– Sharper transition band 

compared to Butterworth
– Poorer group delay
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Chebyshev I Lowpass Filter Characteristics

• All poles
• Poles located on an ellipse 

inside the unit circle
• Allowing more ripple in the 

passband:

_Narrower transition band

_Sharper cut-off

_Higher pole Q

Example: 5th Order Chebyshev I Filter

s-planejω

σ

Chebyshev I LPF  3dB passband ripple
Chebyshev I LPF 0.1dB passband ripple
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Bode Diagram
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Filter Types 
Cheybshev II Lowpass

• Chebyshev II filter
– Ripple in stopband
– Sharper transition 

band compared to 
Butterworth

– Passband group 
delay superior to 
Chebyshev I

Example: 5th Order Chebyshev II filter
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Filter Types 
Cheybshev II Lowpass

Example: 
5th Order 

Chebyshev II Filter

s-plane

jω

σ

• Both poles & zeros

– No. of poles n
– No. of zeros n-1

• Poles located both inside 
& outside of the unit circle

• Zeros located on jω axis
• Ripple in the stopband 

only

poles
zeros
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Filter Types 
Elliptic Lowpass Filter

• Elliptic filter
– Ripple in passband
– Ripple in the stopband
– Sharper transition band 

compared to Butterworth & 
both Chebyshevs

– Poorer group delay
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Filter Types 
Elliptic Lowpass Filter

Example: 5th Order Elliptic Filter

s-plane

jω

σ

Pole
Zero

• Both poles & zeros
– No. of poles n
– No. of zeros n-1

• Zeros located on jω axis
• Sharp cut-off

_Narrower transition 
band

_Pole Q higher 
compared to the 
previous filters
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Filter Types
Bessel Lowpass Filter

s-planejω

σ

• Bessel

– All poles
– Maximally flat group 

delay
– Poor amplitude 

attenuation
– Poles outside unit circle 

(s-plane)
– Relatively low Q poles

Example: 5th Order Bessel filter

Pole
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Filter Types 
Comparison of Various LPF Magnitude Response
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Filter Types 
Comparison of Various LPF Singularities

s-plane

jω

σ

Poles Bessel
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Poles Elliptic
Zeros Elliptic
Poles Chebyshev I 0.1dB
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Comparison of Various LPF Groupdelay

Bessel

Butterworth

Chebyshev I 
0.5dB Passband Ripple

Ref: A. Zverev, Handbook of filter synthesis, Wiley, 1967.
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Group Delay Comparison 
Example

• Lowpass filter with 100kHz corner frequency
• Chebyshev I versus Bessel

– Both filters 4th order- same -3dB point
– Passband ripple of 1dB allowed for Chebyshev I
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Magnitude Response

Bode Magnitude Diagram
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Phase Response
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Group Delay

104 105 106
0

2

4

6

8

10

12

14

Frequency [Hz]

G
ro

up
 D

el
ay

 [µ
 s

]

4th Ord. Chebychev 1
4th Ord. Bessel

EECS 247 Lecture 2:  Filters © © 2004 H.K.  Page32

Normalized Group Delay
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Step Response
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Intersymbol Interference (ISI)

ISIà Broadening of pulses resulting in interference between successive transmitted 
pulses

Example: Simple RC filter
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Pulse Broadening
Bessel versus Chebyshev
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Measure of Signal Degradation
Eye Diagram

• Eye diagram is a useful graphical illustration for signal degradation 
• Consists of many overlaid traces of a signal using an oscilloscope 

where the symbol timing serves as the scope trigger
• It is a visual summary of all possible intersymbol interference 

waveforms
– The vertical opening à immunity to noise
– Horizontal opening à timing jitter
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Measure of Signal Degradation
Eye Diagram

• Random data with max. power spectral density of:

– 50kHz
– 100kHz
– 130kHz
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Eye Diagrams
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Eye Diagrams

Filter with constant group delay àMore open eye à Lower BER (bit-error-rate)

Random data maximum power spectral density à 100kHz
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Summary
Filter Types

– Filters with high signal attenuation per pole   _ 
poor phase response

– For a given signal attenuation requirement of 
preserving constant groupdelayàHigher order 
filter
• In the case of passive filters  _ higher component count
• Case of integrated active filters  _ higher chip area & 

power dissipation

– In cases where filter is followed by ADC and DSP
• Possible to digitally correct for phase non-linearities 

incurred by the analog circuitry by using phase equalizers
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Summary
Filter Types

• Filters with high signal attenuation per pole à poor phase 
response

• For a given signal attenuation requirement of preserving 
constant groupdelayàHigher order filter
– In the case of passive filters à higher component 

count
– Case of integrated active filters  à higher chip area & 

power dissipation
• In cases where filter is followed by ADC and DSP 
àpossible to digitally correct for phase non-linearities
incurred by the analog circuitry by using digital phase 
equalizers
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RLC Filters

•Bandpass filter:
oVR

CLinV
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RLC Filters

•Design a bandpass filter with:
•Center frequency of 1kHz
•Q of 20

•Assume that the inductor has series R resulting in an 
inductor Q of 40
•What is the effect of finite inductor Q on the overall Q?

oVR

CLinV
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RLC Filters
Effect of Component Finite Q

idealfi l t ind.
f i l t

1 1 1
Q QQ

= +

Q=20 (ideal L)
Q=13.3 (QL=40)

eComponent Q must be much higher compared 
to desired filter Q
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RLC Filters

Question:
Can RLC filters be integrated on-chip?

oVR

CLinV
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Monolithic Inductors
Feasible Quality Factor & Value

vRef: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999

c Feasible monolithic inductor in CMOS tech. <10nH  with Q <7
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Monolithic LC Filters

• Monolithic inductor in CMOS tech. 
– L<10nH  with Q<7 

• Max. capacitor
– C< 10pF

cLC filters in the monolithic form feasible: 
- freq >500MHz 
- Only low quality factor filters

Learn more in EE242
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Monolithic Filters

• Desirable to integrate filters with critical frequencies 
<< 500MHz 

• Per previous slide LC filters not a practical option in 
the integrated form

• Good alternative:

cIntegrator based filters


