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EE247
Lecture 26

• Administrative
– Final exam: 

• Date:       Wed. Dec. 15th

• Time:      12:30pm-3:30pm
• Location: 289 Cory

• Closed book/course notes
• No calculators/cell phones/PDAs/Computers

• You can bring two 8x11 paper with your own notes
• Final exam covers the entire course material
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Oversampled Converters
Cont‘d

• Higher order Σ∆ modulators
– Single-loop single-quantizer modulators with multi-order 

filtering in the forward path

• Example: 5th order Σ∆
– Modeling
– Noise shaping 
– Complex loop filters
– Stability
– Voltage scaling, input range scaling
– Tones, Dither, kT/C noise
– Interference via Vref

à Effect of component nonlinearities on Σ∆ performance
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Modeling Σ∆ Nonlinearities

• Many component nonlinearities contribute 
errors
– Important to identify the ones which incur 

significant errors and analyze those only
– Unnecessarily complex models reduce the chance 

to find relevant problems, and, perhaps, solutions
– As with all nonidealities, model one at a time

• Expect errors from the 2nd integrator to be 
reduced by the gain of the 1st integrator
– Errors further downstream are even less 

significant
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Capacitor Voltage Coefficient

• Ideal capacitor

• Practical capacitor (1st order model)

• Typical voltage coefficients
– Poly-poly capacitors 10 ppm/V
– Metal-metal capacitors 1 … 10 ppm/V
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The effect of CFB’s voltco is 
non-obvious, so we’ll have to 
analyze it
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CIN Voltage Coefficient

• From charge conservation  (VCM=0, CR1=CR2=CR):
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CIN Voltage Coefficient
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Output Spectrum
Integrated Noise

• Vin = VFS = 1V
• Spectrum scaled for VFS
à 0dB
(window lowers peak)

• Noise integral excludes 
DC, fundamental

• α = 10 ppm/V

• 2nd harmonic at –103dB 
dominates noise!

• Let’s characterize it …
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CIN Voltage Coefficient

2nd harmonic increases 2dB 
per 1dB increase of the input 
signal amplitude
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CFB Voltage Coefficient
• Let’s look next at the voltage coefficient of the feedback capacitor in the 

1st integrator

• We “turn off” all other nonidealities – CIN voltage coefficients, noise, etc.
– Makes it easier to find the effect of CFB on the modulator
– Downside: we miss potential interactions between nonidealities
– Often they are negligible: nonidealities (like voltage coefficients) produce 

small errors … linear superposition applies
– Of course it’s a good idea to run a complete verification at the end
– And we’ll get to diagnose the “real thing” soon enough … without the insight 

gained from such idealized simulations it’s next to impossible to diagnose a 
complex chip

• Evaluating the effect of the CFB voltage coefficient requires solving a 
quadratic equation, as shown in the next slide …
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CFB Voltage Coefficient
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CFB Voltage Coefficient
• Effect less pronounced than 

for CIN

• Noise remains zero at DC

• First order noise for large α

• Nonlinearities operating on 
shaped noise change the 
shape of the noise …

– No linear model can 
predict this

• No harmonics … why?
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1st Integrator Output

• The input signal 
appears much 
attenuated at the output 
of the 1st Integrator

• This signal appears 
across CFB … and 
since it contains no 
strong tones it 
produces no harmonics
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DC Input

• For α = 1000 ppm/V, tones 
produced by CFB are much 
larger than native tones, but 
move with the same 
velocity as native tones 
(1.2kHz/mV)

• Where are these tones 
coming from?
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Quantization Noise Nonlinearity

• Native tones at a frequency fD close to fs/2 have 
much higher power than in-band tones

• When this tone passes a nonlinearity in the 
modulator loop filter, it produces distortion
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Quantization Noise Nonlinearity

( ) ( )[ ]tftf DD 22cos
2
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• In the sampled data system,

maps to fδ

• Small nonlinearities applied to aggressively shaped 
quantization noise can produce big tone problems …

δfff sD −=2

EECS 247 Lecture 26: Oversampled ADCs Cont'd &  Final Remarks © 2004 H. K. Page   20

1.45 1.46 1.47 1.48 1.49 1.5
x 106

-200

-100

0

O
ut

pu
t [

dB
FS

]

0 1 2 3 4 5
x 104

-200

-100

0

O
ut

pu
t [

dB
FS

]

Frequency  [Hz]

CFB Voltage Coefficient
α= 10 ppm/V  used in 

simulation

• Tones appear near fs/2, 
as expected

• Apparently these are 
“folded” to the base-
band

• As long as the tones are 
below -100dBà
acceptable

140dB



EECS 247 Lecture 26: Oversampled ADCs Cont'd &  Final Remarks © 2004 H. K. Page   21

Effect of Circuit Non-Idealities
• In principle, the digital filter removes out-of-band tones

– Except their distortion components falling in the baseband, caused by 
nonlinearities in the modulator loop filter 

– Except components that are mixed down to baseband due to noise in the 
DAC reference

• The CFB1 voltage coefficient adds only a small nonlinearity to the 
quantization noise path
– Fortunately this nonlinearity is applied to the integral of the quantization noise 

and sees only a small signal component
• Nonlinearities in the amplifier are much more Other source of 

nonlinearityà switch induced distortion
– Including those in the model is left as an exercise …including effect of 3rd

order nonlinearities

• Maintaining extremely high levels of linearity in H(z) is the most 
significant transistor-level design challenge of high resolution Σ∆
modulators
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Summary
Oversampled ADCs

• Speed is traded for resolution

• Noise shaping utilized to reduce baseband 
quantization noise power

• Reduced precision requirement for analog building 
blocks compared to Nyquist rate converters

• Relaxed transition band requirements for analog anti-
aliasing filters

• Utilizes low cost, low power digital filtering 
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Material Covered in EE247
• Filters 

– Continuous-time filters
• Biquads & ladder type filters
• Opamp-RC, Opamp-MOSFET-C, gm-C filters
• Automatic frequency tuning

– Switched capacitor (SC) filters
• Data Converters

– D/A converter architectures
– A/D converter 

• Nyquist rate ADC- Flash, Interpolating & Folding, 
Pipeline ADCs,….

• Self-calibration techniques
• Oversampled converters
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Role of Analog Interfaces in VLSI Systems

Ref:      Prof. P. R. Gray, University of California @ Berkeley EECS249
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Systems Including Analog-Digital 
Interface Circuitry

– Wireline communications
• Telephone related (DSL, ISDN, CODEC)
• Television circuitry (Cable modems, TV tuners…)
• Ethernet (Gigabit, 10/100BaseT…)

– Wireless
• Cellular telephone (CDMA, Analog, GSM….)
• Wireless LAN (Blue tooth, 802.11a/b/g…..)
• Radio (analog & digital), Television

– Disk drives
– Fiber-optics systems
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Frequency Range

DC 10MHz

Baseband

IF Band

RF Band

455kHz 100MHz

500kHz 10GHz

10.7MHz 80MHz
AM Radio FM Radio Cellular Phone

EE240, EE247
EE242
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Wireline Communications
Telephone Based 

EECS 247 Lecture 26: Oversampled ADCs Cont'd &  Final Remarks © 2004 H. K. Page   28

Data Transmission Over Existing Twisted-Pair 
Phone Lines
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• Data transmitted over existing phone lines covering distances close to 
3.5miles
– ISDN
– HDSL, SDSL,……
– ADSL

Customer
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Data Transmission Over Twisted-Pair Phone Lines
ISDN (U-Interface) Transceiver
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• Full duplex transmission (RX & TX signals sent simultaneous)
• 160kbit/sec baseband data (80kHz signal bandwidth)
• Standardized line code 2B1Q (4 level code 3:1:-1:-3)
• Max. desired loop coverage 18kft (~36dB signal attenuation)
• BER (bit-error-rate) 10-7 à(min. SNDR=27dB)

Customer
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Analog Front-End
Transmit Pulse Shape

Standard mandates a pulse mask à Ensure min. high-frequency 
content on the line to avoid spurious coupling into other lines
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ISDN (U-Interface) Transceiver
Echo Problem

Central Office

• Transformer coupling to line
– For a perfectly matched system, no leakage of TX signal into RX path.
– Unfortunately, system has poor matching + complicating factor of bridged-

taps

Customer

Xmitter
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ISDN (U-Interface) Transceiver
Echo Problem

Central Office

• System full duplex transmission à RX & TX signals sent simultaneous (& at the 
same frequency band)
– Leakage of TX signal to RX path (echo)
– In the worst case the echo could be 30dB higher compared to the received 

signal!! 

Customer

Xmitter
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Xmitter

Receiver
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ISDN (U-Interface) Transceiver
Echo Cancellation

• Echo cancellation performed in the digital domain
– Transversal adaptive digital filter à echo cancellation

• Any non-linearity incurred by the analog circuitry makes echo canceller 
much more complex 
à Desirable to have high linearity analog circuitry (75dB range)
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Simplified Transceiver Block Diagram

CMAà Control, maintenance & access unit
DFE à Decision feedback equalizer
DEC à Decimation filter
REC à Reconstruction filter
LEC  & NEC àLinear/non-linear echo-canceller

Ref: H. Khorramabadi, O. E. Agazzi, et. al"An ANSI standard ISDN transceiver chip set, " IEEE International Solid-State 
Circuits Conference, vol. XXXII, pp. 256 - 257, February 1989. 
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Analog Front-End
2b S.C.

DAC

2nd order
Butterworth
S.C. Filter

Class A/B
Line Driver

13bit
Double-Loop

To avoid stringent 
requirements for non-
linear echo canceller:
-> high linearity analog 
circuitry needed (~ 75dB)

Signal bandwidthà80kHz
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Chip Photo
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Data Transmission Over Twisted-Pair Phone Lines
DSL (Digital Subscriber Loop)

• HDSL &SDSL more like ISDN @ higher frequencies
– Full duplex transmission with RX & TX signals on the same 

frequency band
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Data Transmission Over Twisted-Pair Phone Lines
ADSL (Digital Subscriber Loop)

• In USA mostly ADSL à FDM (frequency division multiplex)
– Signal from CO to customer on a different band compared to 

customer to CO
• Echo cancellation can be performed by simple filtering

– Data rates up to 8Mbps (much higher compared to ISDN)
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ADSL Signal Characteristics
• Main difference compared to ISDN: TX & RX signals on different 

frequency bands
– Downstream (fast, from CO to customer) 138kHz to 1.1MHz
– Upstream (slow, from customer to CO) 30kHz to  138kHz

• Echo cancellation much easier
• More severe signal attenuation at high frequencies (1MHz DSL v.s. 

80kHz ISDN)
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Typical ADSL Analog Front-End

• ADC 16/14b with 14bit linearity, pipeline with auto. calibration @ 4.4Ms/s
• DAC 16/14b with 14bit linearity, S.C. with auto. calibration
• On-chip filters 3rd to 4th order LPF with fc 1.1MHz for downstream and 138kHz 

upstream (typically continuous-time type filters with on-chip frequency tuning)

Ref:      D.S. Langford, et al, “A BiCMOS Analog Front-End Circuit for an FDM-Based ADSL System,” IEEE Journal 
of Solid State Circuits, Vol. 33, No. 9, pp. 1383-1393, Dec. 1998.

Central Office

Customer
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Typical ADSL Analog Front-End

• Notice band selection filters 
are off-chip due to stringent 
noise requirements 
(3nV/rtHz)
– Discrete LC type

• Line driver on a 
separate bipolar 
chip to achieve 
the required high 
output signal 
levels with high 
power efficiency
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Wireless Communication 
Circuits
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Wireless Circuits

• Differ from wired comm. circuits
– Includes RF circuitry+IF 

circuitry+baseband circuits (three different 
frequency ranges)

– Signal scenarios in wireless receivers more 
challenging

– Requirement for received signal BER in the 
order of 10-3 à(min. SNR~9dB)
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Typical Cellular Phone
Block Diagram
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Superheterodyne Receiver 

• One or more intermediate frequency (IF)
• Periodic signal at a frequency equal to the desired RX signal + or – IF frequency 

is provided by a Local Oscillator
• RX signal is frequency shifted to a fixed frequency (IF filter center frequency)

RF 
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Reject
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Frequency
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fc = f2 -f1f2 -f1 f2 + f1

f2 -f1 f2 + f1
f2
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RF Superheterodyne Receiver
Example: CDMA Receiver 

• Received frequency is mixed down to a fixed IF 
frequency and then filtered with a bandpass filter

RF 
Amp

Image 
Reject
Filter 

Frequency
Synthesizer

AGCAGC

880MHz
965.38MHz

fc =85.38MHz
BW=1.25MHz

870M 893.3MHz
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RX Band
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Why Image Reject Filter? 

• Any signal @ the image frequency of the RX signal with respect 
to Osc. frequency will fall on the desired RX signal and cause 
impairment 

RF 
Amp

Frequency
Synthesizer

fIF = f2 -f1
f2 -f1
f3 – f2

f2 -f1 f2 + f1
f2f1 f3f2
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Why Image Reject Filter? 

• Image reject filter attenuate signals out of the RX band 
• Typically, image reject filters are ceramic or LC type filters

RF 
Amp

Frequency
Synthesizer

fIF = fosc -f1
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foscf1 f3fosc
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Image 
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Quadrature Downconversion

• In systems with phase or freq. modulation, since signal is not 
symmetric around fIF , directly converting down to baseband corrupts 
the sidebands 

àQuadrature downconversion overcomes the problem
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Effect of Adjacent Channels

• Adjacent channels can be as much as 60dB higher compared to the desired RX 
signal! 

• Linearity of stages prior and including channel selection filters extremely important
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Effect of Adjacent Channels

• Due to existence of large unwanted signals & limited 
dynamic range for the front-end circuitry:
– Can not amplify the signal up front due to linearity issues
– Need to allocate amplification/filtering numbers to RX blocks 

carefully
– Can only amplify when unwanted signals are filtered 

adequately
– System design critical with respect to tradeoffs affecting:

• Gain
• Linearity
• Power dissipation
• Chip area
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Wireless Communications
Linearity

• Most critical contributor to non-linearity in 
wireless communications circuits 3rd order 
intermod.:

• Two forms of linearity measurements:
– 1dB compression pointà Useful for the cases 

where the desired received channel is strong
– 3rd order intercept point à Good measure for 

when interferers much larger compared to the 
desired channel
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Wireless Communications Measure of Linearity
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Wireless Communications Measure of Linearity Third 

Order Intercept Point
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Most common measure of linearity for wireless circuits:
à OIP3 & IIP3, Third order output/input intercept point
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Homodyne Receiver 

• No intermediate frequency, signal mixed down to baseband
• Almost all of the filtering performed at baseband

– Higher levels of integration possible 
– Issue to be aware of:

• Requirements for the baseband filters very stringent
• Since the local oscillator frequency is exactly at the same freq. as the RX signal 

freq. à can cause major DC offsets can drive the receiver front-end into non-linear 
region

Frequency
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f1

f IF =0

RF 
Amp

A/D 

A/D 

90ο

AGC

fosc = f1
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Example: Wireless LAN 802.11b & Bluetooth

Ref:      H. Darabi, et al, “A Dual Mode 802.11b/Bluetooth Radio in 0.35um CMOS,” International Solid State Circuits 
Conference, 2003 pp. 86-87.
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Digital IF Receiver
(IF sampling)

• IF signal is converted to digital àmost of signal processing performed 
in the digital domain

• Performance requirement for ADC extremely demanding in terms of 
noise, linearity, and dynamic range!

• With advancement of ADCs may be the architecture of choice in the 
future
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Typical Wireless Transmitter

D/A 

D/A 

Frequency
Synthesizer

90ο
PA

AGC

D
S
P

•Transmit signal shipped from DSP to the analog front-end in the form of I& Q signals
•Signal converted to analog form by D/A
•Lowpass filter provides pulse shaping
•In-phase & Quad. Components combined and then mixed up to RF 
•Power amplifier amplifies and provides the low-impedance output
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Analog Filters in Typical Wireless 
Transceivers
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RF Filter Image Rejection Ceramic or LC
IF Filter Channel selection SAW 
Base-band Filters Channel Selection Integrated Cont.-Time

& Anti-aliasing for ADC or S.C.

IF
Filter
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Example: Dual Mode CDMA (IS95)& Analog Cellular Phone
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Example: Dual Mode CDMA (IS95)& 
Analog Cellular Phone

• Baseband analog circuitry includes:
– CDMA

• 4bit flash type ADC clock rate 10MHz
• 8bit segmented TX DAC clock rate 10MHz (shared with 

FM)
• 7th order elliptic RX lowpass filter corner freq. 650kHz
• 3rd order chebyshev TX lowpass filter corner freq. 650kHz

– FM (analog)
• 8bit successive approximation ADCs clock rate 360kHz
• 5th order chebyshev RX lowpass filter corner frequency 

14kHz
• 3rd order butterworth TX lowpass filter corner frequency 

27kHz
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Summary

• Examples from wireline & wireless 
systems utilizing analog & RF circuitry 
discussed

• Analog circuits still remain the 
interfaceà connecting the digital world 
to the real world!


