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EE247
Lecture 14

• Administrative issues:
– Midterm date changed to Thurs. Oct. 21
– Final exam moved to Wednesday, 

December 15, 12:30-3:30pm
– Both date changes due to conflict with 

EE142
– No homework next week
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EE247
Lecture 14

• Data Converters
• Practical aspects of converter testing

• Signal source 
• Clock generator
• Evaluation board considerations

• D/A converter design
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Converter Testing 
Practical Aspects
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Just Got Silicon Back...

• Now what ?
• Practical aspects of 

converter testing
• Equipment 

requirements
• Pitfalls
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Direct ADC-DAC Test

• Need a very good DAC
• Actually a good way to "get started"...

ADC
Vin Vout

DAC
Specrum
Analyzer

Signal
Generator

Clock
Generator

Device Under Test (DUT)
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Direct ADC-DAC Test

• Beware of spectrum analyzer nonlinearities
• For high performance converter linearity test, may need to notch out the signal 

to measure the ADC linearity via spectrum analyzer 
• Need to build or purchase notch filter/s
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Filtering 
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ADC Test Setup

ADC
Vin PCSignal

Generator

Clock
Generator

Data
Acquisition

Evaluation 
Board?

How to get 
data across?

Specs?

Specs?
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Example: High Performance ADC

• Testing a high performance converter may be just as 
challenging as designing it!

• Key to success is to be aware of test setup and 
equipment limitations

[W. Yang et al., "A 3-V 340-mW 
14-b 75-Msample/s CMOS ADC 
with 85-dB SFDR at Nyquist 
input," IEEE J. of Solid-State 
Circuits, Dec. 2001]

EECS 247 Lecture 14:  Data Converters © 2004 H.K.  Page 10

Example: ADC Linearity Test 

Ref: W. Yang et al., "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input," 
IEEE J. of Solid-State Circuits, Dec. 2001
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Signal Source
• Need: SFDR>95dB @ fin=fs/2=37.5MHz & 

SFDR>70dB to about 120MHz
• Let's see, how about the "value priced" signal 

generator available in most labs...

• f=0...15MHz
• Harmonic distortion (f>1MHz): 

-35dBc
à Does not cover the 

required frequency range 
& poor linearity
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A Better Signal Source

• OK, now we've spent about $40k, this 
should work now... (?)

• f=100kHz...3GHz
• Harmonic distortion 

(f>1MHz): -30dBc !
• No way to produce the 

sine wave we need 
without a filter!
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Filtering Out Harmonics

• Given HD=-30dBc, we need a stopband 
rejection > 65dB to get SFDR>95dB

0 ... f

Amplitude

BP Filter
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Available Filters

• Want to test at many frequencies à Need to 
have at least one filter per test frequency!

www.tte.com, or
www.allenavionics.com
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Tunable Filter

www.klmicrowave.com
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Filter Distortion

• Beware: The filters themselves also 
introduce distortion

• Distortion is usually not specified, need 
to call manufacturer

• Often guaranteed: HD<-85dBc, 
• Don't trust your filters blindly... 
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Clock Generator
• Let us check if for the clock a "value-

priced" signal generator will suffice...
• No! The clock signal controls sampling 

instants – which we assumed to be 
precisely equi-distant in time (period T)

• Variability in T causes errors
– "Aperture Uncertainty" or "Aperture Jitter"

• How much Jitter can we tolerate?
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Clock Jitter

• Sampling jitter adds 
an error voltage 
proportional to the 
product of (tJ-t0) and 
the derivative of the 
input signal at the 
sampling instant

• Jitter doesn’t matter 
when sampling dc 
signals (x’ (t0 )=0)

nominal
sampling

time t0

actual
sampling

time tJ

x(t)

x’(t0)
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Clock Jitter

• The error voltage is

nominal
sampling

time t0

actual
sampling

time tJ

x(t)

x’(t0)

e = x’(t0)(tJ – t0)

error
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Jitter Example
Sinusoidal input Worst case

0.5 ps
0.8 ps
1.2 ps

10 MHz
100 MHz

1000 MHz

16
12
8

dt <<fs# of Bits

( )

( )

x

x

x x

xmax

x

Ampli tude:           A
Frequency:           f         

J i t ter:           d t

x( t ) Asin 2 f t

x' ( t ) 2 f Acos 2 f t

x' ( t ) 2 f A

e( t ) x' ( t ) dt

e( t ) 2 f A dt

π

π π

π

π

=

=

≤

≤

≤

sFS
x

s FS

FS
B 1

B
s

fAA f2 2

f Ae( t ) dt2

A
e( t )

2 2

1
dt

2 f

π

π

+

= =

≤

∆
<< ≅

<<



EECS 247 Lecture 14:  Data Converters © 2004 H.K.  Page 21

Law of Jitter

• The worst case looks pretty stringent …
what about the “average”?

• Let’s calculate the mean squared jitter error (variance)
• If we’re sampling a sinusoidal signal 

x(t) = Asin(2πfxt), 
then
– x’(t) = 2πfxAcos(2πfxt)
– E{[x’(t)]2} = 2π2fx2A2

• Assume the jitter has variance  E{(tJ-t0)2} = τ2
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Law of Jitter

• If x’(t) and the jitter are independent
– E{[x’(t)(tJ-t0)]2}= E{[x’(t)]2} E{(tJ-t0)2}

• Hence, the jitter error power is

• If the jitter is uncorrelated from sample 
to sample, this “jitter noise” is white

E{e2} = 2π2fx
2A2τ2 (compare to the worst case 4π2fx2 A2 τ2 )
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Law of Jitter
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ADC under test:
SNR=73dB
fin=37.5MHz
⇒ τ<<1ps rms !
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More on Jitter
• Once we have a good enough generator, other circuit and test 

setup related issues may determine jitter, but...

• Usually, clock jitter in the single-digit pico-second range can be 
prevented by appropriate design techniques
– Separate supplies

– Separate analog and digital clocks

– Short inverter chains between clock source and destination

• Few, if any, other analog-to-digital conversion non-idealities 
have the same symptoms as sampling jitter:
– RMS noise proportional to input frequency

– RMS noise proportional to input amplitude

àIn cases where clock jitter limits the dynamic range, it’s easy 
to tell, but may be difficult to fix...
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Evaluation Board
• Planning begins with converter pin-out

– Example of poor pin-outà clock pin right next to a digital 
output...

• Not "Black Magic", but weeks of design time 
and learning

• Key aspects
– Supply/ground routing, bypass capacitors
– Coupling between signals

• Good idea to look at ADC vendor datasheets 
for example layouts/schematics/application 
notes
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Vendor Eval Board Layout

[Analog Devices AD9235 Data Sheet]
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Issues 
• A converter does not just have one "input"

– Clock
– Power Supply, Ground
– Reference Voltage

• For good practices on how to avoid issues 
see e.g.:
– Analog Devices Application Note 345: "Grounding 

for Low-and-High-Frequency Circuits"
– Maxim Application Note 729: "Dynamic Testing of 

High-Speed ADCs, Part 2"
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How to Get the Bits Off Chip?

• "Full swing" CMOS signaling works well 
for fCLK<100MHz

• But we want to build faster ADCs...
• Alternative to CMOS: LVDS – Low 

Voltage Differential Signaling
• LVDS vs. CMOS:

– Higher speed, more power efficient at high speed
– Two pins/bit!
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LVDS Outputs

Analog Devices Application Note 586: "LVDS Data Outputs for High Speed ADCs"
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LVDS Outputs

Analog Devices Application Note 586: "LVDS Data Outputs for High Speed ADCs"
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Data Acquisition
• Several options:

– Logic analyzer with PC interface
– FIFO board, interface to PC DAQ card
– Vendor kit, simple interface to printer port:

[Analog Devices, High-Speed ADC FIFO Evaluation Kit]
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Post-Processing

• LabView (DAQ Software Toolbox)
• Matlab
• Some vendors provide example source code
• E.g. Maxim Application Note 1819: "Selecting 

the Optimum Test Tones and Test Equipment 
for Successful High-Speed ADC Sine Wave 
Testing"

• EE247 Matlab Examples, e.g. Sine Code 
Density Test
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Complete Setup

[Maxim Application Note 729: "Dynamic Testing of High-Speed ADCs, Part 2]
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Debugging

• State-of-the-art converters almost always yield 
surprises in silicon
– If models anticipate everything, the application probably isn’t 

state-of-the-art
• Analog designers and mixed-signal architects often 

invent new circuits while measuring in the lab
• How do we debug converters? 

– Start with a simple time domain test. Does the captured 
digital waveform look like a sine wave?

– Begin your DFT/INL signature analysis by scaling down 
sampling frequencies and signal input frequencies together

– If you can’t explain performance with essentially infinite 
settling times, don’t add dynamic errors to the mix
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Debugging

• Typical problems come from non-
idealities never built into your "model"
– E.g. half-circuit models for fully-differential 

circuits inherently can’t explain some types 
of differential-symmetry errors

• You can’t afford to rediscover old non-
idealities in new silicon
– Talking to veterans early in the modeling 

phase can be important
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Debugging

• Design teams usually track down and fix 
single-cause problems quickly

• Interactions are much trickier
• Interaction examples:

– Digital activity-dependent clock jitter
• S/(N+D) degradation only happens when large 

amplitude, high frequency analog inputs coincide with the 
offending digital activity

– Distortion cancellation
• Nonlinear phenomena don’t obey superposition
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Debugging
SFDR vs. Input Frequency (fclk=75MHz)
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• Cancellation of Nonlinearities?
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Debugging
• Never assume all of your data is good

– One bad data set can “rule out” the correct 
explanation, leading you astray forever

• "Compare measurements to themselves“
• But, noise is a random variable, and the noise 

power in 1000 time samples will vary from 
DFT to DFT

• How big an effect is this?
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Debugging

• Can show that:
– Variation of noise in 1000 samples yields a 

standard deviation in SNR of 0.2dB
– This means that 68.3% of all DFTs will produce 

SNRs within 0.2dB of the average
– 99.7% of 1000 point DFTs yield SNRs within 

±0.6dB of the average

• If you’re seeing ADC noise variation of 
greater than ±0.6dB in the lab, some sort of 
interference is usually the culprit
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Debugging

• Always try to use two independent 
measurement methods to verify important 
results
– Correlate INL & SFDR, DNL & SNR

• Comparing time domain and frequency 
domain views of the same measurement is 
good practice
– DC histogram test & thermal noise - DNL & SNR
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D/A Converters

• D/A architecture examples
– Unit element
– Binary weighted

• Static performance
– Component matching
– Architectures

• Unit element
• Binary weighted
• Segmented

– Dynamic element matching
• Dynamic performance

– Glitches
• DAC Examples
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D/A Examples

• Voltage, Charge, or Current Based
• E.g.

– Resistor string
– Charge redistribution
– Current source type
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R-String DAC
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R-String DAC
Example

Example: 
Input code 101

à Vout= 5VREF/8

 τsettling = 
 

=(3R||5R) x C
=0.23 x 8RC

VREF/8

2VREF/8

3VREF/8

4VREF/8

5VREF/8

6VREF/8

7VREF/8

C

R
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R-String DAC
• Advantages:

– Simple, fast for <8-10bits
– Inherently monotonic
– Compatible with purely digital 

technologies

• Disadvantages:
– 2B resistors & 2B switches for B 

bits à High element count & 
larger area  for B>10bits

– High settling time for B > 10:
τmax = 0.25 x 2B RC

*Ref: M. Pelgrom, “A 10-b 50-MHz CMOS D/A 
Converter with 75-W Buffer,” JSSC, Dec. 1990, 
pp. 1347.

C
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Charge Redistribution DAC

• E.g. “Binary weighted”
• B+1 capacitors & switches (if unit elements 

used 2B caps)
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Charge Redistribution DAC
Example: 4Bit DAC- Input Code 1011
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Charge Redistribution DAC

• Monotonicity depends on element matching
• Large area of caps for high DAC resolution (10bit DAC ratio 1:512)
• Sensitive to parasitic capacitor @ output
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Charge Redistribution DAC

• Opamp helps eliminate the parasitic capacitor effect
– Issue: opamp offset & speed

C2C4C8C2(B-1) C

Vref
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reset
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Current Source DAC
Unit Element

• “Unit elements ”
• Monotonicity does not depend on element matching
• 2B-1 current sources & switches 

Iref Iref

Iout

Iref
Iref

……………

……………
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Current Source DAC
Binary Weighted

• “Binary weighted”
• Monotonicity depends on element matching
• B current sources & switches (2B-1 unit elements)

4 Iref Iref

Iout

2Iref
2B-1 Iref

……………

……………
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Static DAC INL / DNL Errors

• Component matching
• Systematic errors

– Contact resistance
– Edge effects in capacitor arrays
– Process gradient
– Finite current source output resistance

• Random errors
– Lithography
– Often Gaussian distribution (central limit theorem)

*Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSC Aug. 1989, 
pp. 1118-28.
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Gaussian Distribution
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Yield
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Yield

X/σ P(-X ≤ x ≤ X)  [%]

0.2000   15.8519
0.4000   31.0843
0.6000   45.1494
0.8000   57.6289
1.0000   68.2689
1.2000   76.9861
1.4000   83.8487
1.6000   89.0401
1.8000   92.8139
2.0000   95.4500

X/σ P(-X ≤ x ≤ X)  [%]

2.2000   97.2193
2.4000   98.3605
2.6000   99.0678
2.8000   99.4890
3.0000   99.7300
3.2000   99.8626
3.4000   99.9326
3.6000   99.9682
3.8000   99.9855
4.0000   99.9937


