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EE247 
Lecture 4

• Summary last lecture
• Lecture today:

– High Q high order filters 
• Transmission zero implementation 
• Example

– Effect of integrator non-idealities on filter behavior
– Various integrator topologies utilized in monolithic 

filters
• Resistor + C based filters
• Transconductance (gm) + C based filters
• Switched-capacitor filters
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Summary Last Lecture

• Integrator based filters
– Signal flowgraph concept
– First order integrator based filter
– Second order integrator based filter & biquads

• High order & high Q filters
– Cascaded biquads

• Cascaded biquad sensitivity 

– Ladder type filters
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Summary last lecture

• How to convert RLC filters to integrator-based filters?
– Label V & I for each RLC filter component
– Derive the state-space description for the network with 

L & C described as (1/xs)
– Draw the corresponding SGF with all voltages 

appearing as nodes and all currents represented by 
nodes drawn close to their associated voltage-
branches are drawn & BMFs defined

– Convert all current nodes to voltage nodes by 
multiplying by R* and scale BMFs accordingly

– Derive the filter block diagram
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Summary last lecture

First Order RLC Filter Conversion to Integrator Based Active
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Summary last lecture

Second Order RLC Filter Conversion to Integrator Based Active
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Summary
Integrator Based Monolithic Filters

• Signal flowgraph techniques utilized to convert RLC networks to all 
integrator active filters

• Each reactive element (L& C) replaced by an integrator
• Fundamental noise limitation  determined by integrating capacitor:

– For lowpass filter:

– Bandpass filter: 

where α is a function of filter order and topology

2
o

k Tv Q Cα=

2
o

k Tv Cα=
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Summary Last Session
High Q & High Order Filters

• Cascade of biquads
– Highly sensitive to component variations à not suitable 

for implementation of high Q & high order filters
– Cascade of biquads only used in cases where required 

Q for all biquads <4 (e.g. filters for disk drives)

• LC ladder filters more appropriate for high Q & high 
order filters
– Less sensitive to component variations 
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Summary
Integrated High Order Ladder Filters
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Summary Last Session
Example 5th Order Butterworth Filter
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Summary Last Session
Max. Signal Handling by Voltage Node Scaling

Scale Vo by factor “s”
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Summary Last Session

5th order ladder filter
Final design utilizing:

-Node scaling 
-Final R & C 
scaling based on 
noise considerations
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inV
Differential 5th Order Lowpass Filter

•Since each signal and its inverse readily available, eliminates the need for 
negative resistors!
•Differential design has the advantage of even order harmonic distortion and 
common mode spurious pickup automatically cancels
•Disadvantage: Double resistor and capacitor area!

+

+

-
-

+

+

-
-

+

+-
-+

+-
-

+

+

-
-

inV

oV

EECS 247 Lecture 4:  Filters © 2004 H.K.  Page 14

RLC Ladder Filters
Including Transmission Zeros
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RLC Ladder Filter Design 
Example

• Design a baseband filter for CDMA IS95 receiver with the 
following specs.
– Filter frequency mask shown on the next page
– Assume any phase impairment can be compensated in the 

digital domain
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RLC Ladder Filter Design Example
CDMA IS95 Receive Filter Frequency Mask
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RLC Ladder Filter Design
Example: CDMA IS95 Receive Filter

• Since phase impairment can be corrected for, use filter type with 
max. cut-off slope/pole

à Elliptic
• Design filter freq. response to fall well within the freq. mask

– Allow margin for component variations
• For the passband ripple, allow enough margin for ripple change 

due to component & temperature variations
à Passband ripple 0.2dB

• Design to spec.:
– fpass = 650 kHz Rpass = 0.2 dB
– fstop = 750 kHz Rstop = 49 dB

• Use Matlab or filter tables to decide the min. order for the filter 
(same as cascaded biquad example)
– 7th Order Elliptic
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RLC Ladder Filter Design
Example: CDMA IS95 Receive Filter
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7th order Elliptic

• Use filter tables to determine LC values 
– Table from A. Zverev, Handbook of filter synthesis, 

Wiley, 1967
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RLC Ladder Filter Design
Example: CDMA IS95 Receive Filter

• Spec.
– fpass = 650 kHz Rpass = 0.2 dB
– fstop = 750 kHz Rstop = 49 dB

• Use filter tables to determine LC values 
– Table from: A. Zverev, Handbook of filter synthesis, Wiley, 

1967
– Elliptic filters tabulated wrt “reflection coeficient ρ”

– Since Rpass=0.2dBà ρ =20%
– Use table accordingly 

( )2Rpass 10 log 1 ρ= − × −
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RLC Ladder Filter Design
Example: CDMA IS95 Receive Filter

• Table from Zverev page #281 & 
282:

• Since our spec. is Amin=44dB 
add 5dB margin & design for 
Amin=49dB
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• Table from Zverev 
page #281 & 282:

• Normalized 
component values:
C1=1.17677
C2=0.19393
L2=1.19467
C3=1.51134
C4=1.01098
L4=0.72398
C5=1.27776
C6=0.71211
L6=0.80165
C7=0.83597
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Passband Detail
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RLC Ladder Filter Sensitivity

• The design has the same spec.s as the previous 
example implemented with cascaded biquads

• To compare the sensitivity of RLC ladder versus 
cascaded-biquads:
– Changed all Ls &Cs by 2% in order to change the 

pole/zeros by 1% (similar test as for cascaded biquad)
– Found  the frequency response is most sensitive to L4 

variations 
– Note that by varying L4 both pole & zeros are varied
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RCL Ladder Filter Sensitivity

Component variation in RLC filter:
– Increase L4 by 2%
– Decrease L4 by 2%
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RCL Ladder Filter Sensitivity
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-10

Cascade of Biquads Sensitivity
Component variation in Biquad 4 (highest Q pole):

– Increase ωp4 by 1%

– Decrease ωz4 by 1%

High Q poles à High sensitivity
in Biquad realizations

Frequency [Hz]
1MHz

M
ag

ni
tu

de
 (

dB
)

-30

-40

-20

0

200kHz

3dB

600kHz

-50

2.2dB

EECS 247 Lecture 4:  Filters © 2004 H.K.  Page 28

Sensitivity Comparison for Cascaded-Biquads 
versus RLC Ladder

• 7th Order elliptic filter 
– 1% change in pole & zero pair

1.7dB
(21%)

3dB
(40%)

Stopband 
deviation

0.2dB
(2%)

2.2dB 
(29%)

Passband 
deviation

RLC LadderCascaded
Biquad

Doubly terminated LC ladder filters _ Significantly lower sensitivity compared to 
Cascaded-Biquads particularly within the passband
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RLC Ladder Filter Design
Example: CDMA IS95 Receive Filter
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7th order Elliptic

• In lecture 3, designed the integrator based ladder filters without 
transmission zeros
àQuestion: 

How do we implement the transmission zeros in the 
integrator-based version? 
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Integrator Based Ladder Filters
How Do We Implement Transmission zeros?

• Use KCL & KVL to derive :
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Voltage Controlled Voltage Source!
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Integrator Based Ladder Filters
Transmission zeros
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• Replace shunt capacitor with voltage controlled voltage sources:
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+-
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LC Ladder Filters
Transmission zeros
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Integrator Based Ladder Filters
Higher Order Transmission zeros
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in C loops to 
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controlled 
voltage sources
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Higher Order Transmission zeros
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Example:
5th Order Chebyshev II Filter

• 5th order Chebyshev II

• Table from: Williams & 
Taylor book, p. 11.112

• 50dB stopband attenuation

• f-3dB =10MHz
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Realization with Integrator

( )
i 1 a2

1 3*
s a 1a 1

V V CV1V VR C Cs C C R
− = − +  ++  
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5th Order Butterworth Filter

From:
lecture 3
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Opamp-RC Simulation
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Seventh Order Differential Lowpass Filter 
Including Transmission Zeros
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Transmission zeros implemented with 
coupling capacitors
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Effect of Integrator Non-Idealities on Filter Performance

Ideal Intg.

opamp DC gain
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Ideal Integrator Quality Factor
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Since Q is defined as:

Then: int g.Qideal =∞
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Effect of Integrator Non-Idealities on Filter Performance
Ideal Intg. Real Intg.
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Effect of Integrator Finite DC Gain on Q 
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Effect of Integrator Finite DC Gain on Q

• Phase lead @ ω0

àDroop in the passband
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Effect of Integrator Non-Dominant Poles  
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Effect of Integrator Non-Dominant Poles
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In extreme cases could 
result in oscillation!

Peaking in the passband
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Effect of Integrator Non-Dominant Poles & 
Finite DC Gain on Q 
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Note that the two terms have different signs 
à Can cancel each other’s effect
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Integrator Quality Factor
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and assuming that:

It can be shown that in the 
vicinity of unity-gain-frequency:

Phase lead @ ω0 Phase lag @ ω0
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Example:
Effect of Integrator Finite Q on Bandpass Filter Behavior

Integrator DC gain=100 Integrator P2 @ 100.ωo

Ideal
Ideal
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Example:
Effect of Integrator Finite Q on Filter Behavior

Integrator DC gain=100 & P2 @ 100. ωο

Ideal
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Summary
Effect of Integrator Non-Idealities on Q

• Amplifier DC gain reduces the overall Q in the same manner as 
series/parallel resistance associated with passive elements

• Amplifier poles located above integrator unity-gain frequency enhance 
the Q! 
– If non-dominant poles close to unity-gain freq. à Oscillation

• Depending on the location of unity-gain-frequency, the two terms can 
cancel each other out!
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Various Integrator Based Filters

• Continuous Time
– Resistive element based

• Opamp-RC
• Opamp-MOSFET-C
• Opamp-MOSFET-RC

– Transconductance (Gm) based
• Gm-C
• Opamp-Gm-C

• Sampled Data
– Switched-capacitor Integrator



EECS 247 Lecture 4:  Filters © 2004 H.K.  Page 53

Integrator Implementation
Opamp-RC & Opamp-MOSFET-C & Opamp-MOSFET-RC
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Integrator Implementation
Gm-C & Opamp-Gm-C

inV

oV
Gm

oV

C

inV

Gm

whereo o m
o

in

V G

V s C

ω
ω

−
= =

-

+
∫

GmC Intg. GmC-OTA Intg.

-

+



EECS 247 Lecture 4:  Filters © 2004 H.K.  Page 55

Integrator Implementation
Switched-Capacitor

-

+

Vin

Vo
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CI

Cs clk s
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s0 clk
I

f C
for f f V V dtinC

Cf Cω

×
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∫ φ1
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Main advantage: Critical frequency function of ratio of Caps & clock freq.
à Critical filter frequencies (e.g. LPF -3dB freq.) very accurate


