Layout Design Rules

(1) Absolute-Value Design Rules
* Use absolute distances

(2) λ -based Design Rules
EE143 Layout Design Rules

1. Basic length unit = $\lambda = 2\mu m$

1.1 Lithography and etching limit = 2λ

1.2 Overlay accuracy = λ
2.1 Metal-Si Contact Hole

(same rule for Metal-poly)

Min. contact hole = $2\lambda \times 2\lambda$

Min contact hole to diffusion layer distance = λ
2.2. Metal Lines

Min width = 2λ

Min. metal-metal spacing = 3λ

[Rationale] Metal runs on rough topography

3 λ spacing to ensure no shorting between the 2 lines.
Min overlap of contact hole = λ

Etching problem

CVD SiO$_2$ deposition. problem in narrow gap
Metal line-width is larger when running over a contact hole

Configuration 1

Configuration 2
2.3 Poly-Si Lines

Min width = 2λ

Min poly-poly spacing = 2 λ

[Rationale: Unlike metal lines, poly-Si runs on smoother topography]

Min underlap of metal/poly contact = λ

4λ \times 4λ
Example: Metal Contact to Poly

Note: Both metal and poly linewidths will enlarge to accommodate contact hole overlay error λ.
2.4. MOS Thin-Oxide Region

Min Width = 2 \lambda

Min spacing = 3 \lambda

Thick Oxide Region (FOX)

Thin Oxide Region (active device area)
Min underlap of thin-oxide contact $= \lambda$
3. Poly-Si Gate

Min gate-overlap of field oxide = 2λ

[Comment] Avoid n+ channel formation during S/D Implant

With overlay error
Min thin-oxide contact to gate spacing = 2 λ
Comment:
Al to poly contact should not be directly on top of gate oxide area.

Diagram:
- Silicon (Si) at the bottom.
- Gate oxide layer above Si.
- Poly gate and Al layer above the gate oxide.
- SiO2 layer between Poly and Si.
- Al spike formation at ~400°C.
Al contact on thick oxide area ok

2λ
Min Gate Width = 2 λ

Min Gate Length = 2 λ

Usually: W/L are specified by circuit requirement.

Min. poly to thin oxide spacing = λ
Example: Design a minimum-size poly-gate MOS transistor with $W/L = 4\mu m/4\mu m (2\lambda \times 2\lambda)$

- Minimum size contact = $2\lambda \times 2\lambda$
- Minimum thin-oxide-region underlap of contact = λ
- Minimum source/drain contact to gate spacing = 2λ
- Minimum $L = 2\lambda$, Minimum $W = 2\lambda$
- Minimum gate overlap of field-oxide region = 2λ
- Minimum metal overlap of contact = λ
- Minimum thin-oxide-region to thin-oxide-region spacing = 3λ

* Layout area /transistor = $15\lambda \times 7\lambda = 105 \lambda^2$