1. Lab 3
 a. Complete Lab 3, answer the labeled questions, and submit them with this assignment.

2. Flip-Flop

 A flip-flop is shown in Figure 2.

 ![Figure 2](image_url)

 In this process, a symmetrically-sized inverter has \(W_p = W_n \), and a unit-sized transistor has gate and drain capacitances of 1 fF and the on-resistance of 5 kΩ. The resistance of a stack of two devices is 1.5x of the resistance of a single transistor with the same width. You can assume that the true and complementary clocks are ideal, and the logical effort of creating \(\overline{Clk} \) from \(Clk \) is 1.

 a) Is the flip-flop triggered by a rising or a falling edge of the \(Clk \)?
 b) Calculate the \(Clk \rightarrow \overline{Q} \) delay for a 0→1 transition at the output and show your work.
 c) Calculate the hold time for \(D = 1 \).

3. SRAM

 Consider a conventional 6-T SRAM cell, sized to be stable at nominal operating conditions. The cell is supposed to be operated within a conventional, precharged-to-\(V_{DD} \) bitline array. We would like to operate it at a reduced supply voltage so we are considering assist techniques. Let’s analyze the effect of peripheral signals on the operation of the cell (briefly explain your answers).

 a) How does increased wordline voltage affect the read stability of the cell?
 b) How does increased wordline voltage affect the read access time of the cell?
 c) How does increased wordline voltage affect the writeability of the cell?
d) How does shortened wordline pulse affect the read stability of the cell?

e) How does shortened wordline pulse affect the writeability of the cell?

f) How does increased cell supply voltage (without changing other signal levels) affect the writeability of the cell?