March 4, 2020, AnandTech

El Capitan Supercomputer Detailed: AMD CPUs & GPUs to drive 2 Exaflops of compute.

Back in August, the United States Department of Energy and Cray announced plans for a third United States exascale supercomputer, El Capitan. Scheduled to be installed in Lawrence Livermore National Laboratory (LLNL) in early 2023.
Announcements

• Quiz 2 on Thursday
• Please send me links to your project web pages
• Assignment 3 due next week
• Project midterm reports due next week
Outline

• Module 4
 • SRAM dynamic margins
 • Assist techniques
4.C Static Read/Write Margins
Writeability – BL/WL Write Margins

• Highest BL voltage under which write is possible when BLC is kept precharged

• Difference between VDD and lowest WL voltage under which write is possible
Write Stability – Write Current (N-Curve)

- Minimum current into the storage node

C. Wann et al, *IEEE VLSI-TSA 2005*
The Conflict Between Read and Write

READ - OPTIMIZED SYSTEM

- WL
- Tpu
- Tpg
- Large Beta (Tpd/Tpg)
- Large Gamma (Tpu/Tpg)
- BLn
- BLT
- BLRn
- WB_S
- RB_Sn
- (n)
- Write Driver
- Sense Amplifier

WRITE - OPTIMIZED SYSTEM

- WL
- Tpu
- Tpg
- Small Beta (Tpd/Tpg)
- Small Gamma (Tpu/Tpg)
- BLn
- BLT
- BLRn
- WB_S
- RB_Sn
- (n)
- Write Driver
- Sense Amplifier
V\textsubscript{Th} Window

• Assuming global spread

Yamaoka, ISSCC’05
4. Dynamic Margins
6-T SRAM Static/Dynamic Stability

- **Read Margin**
 - SNM: pessimistic

- **Write Margin**
 - WNM: optimistic

- **Introduction to dynamic margins**
 - Three failure modes: read stability, writeability and read access time
Dynamic Write Stability

• $T_A < T_{\text{write}} < T_B$
• T_{write} = dynamic write stability
• Static margins are optimistic

Khalil, TVLSI’08
Dynamic Read Stability

- $T_A < T_{\text{read}} < T_B$
- $T_{\text{read}} = \text{dynamic read stability}$
- Static margins are pessimistic

Khalil, TVLSI ‘08
Dynamic Read Access

- \(T_A < T_{\text{access}} < T_B \)
- \(PD_1 \) and \(PG_1 \) are critical

Khalil, TVLSI '08
SRAM Overall Vmin

- Both read and write
- Some contradicting data
SRAM Vmin Scaling Trend

- SRAM voltage often higher than logic

J. Chang, ISSCC'20
4.E SRAM Peripheral Circuits
Peripheral Circuits in SRAM

- Decoders (and pre-decoders)
- Column circuitry: read, write, multiplex, mask
- Write assist techniques
- Read assist techniques
- Redundancy
- BIST
- ECC
SRAM Array

AMD Zen2
ISSCC’20
Array Adjustments

Array back bias, to compensate for systematic variations

May be useful in technologies with strong body effect

S. Mukhopadhyay, VLSI 2006
4.F SRAM Assist Circuits
Basic Ideas

• Dynamically change voltages
Dynamic V_{DD} Implementation

- VCC selection is along column direction to decouple the read & write

Zhang, ISSCC’05
Floating VDD Technique

- W/o second supply

Yamaoka, ISSCC'04
Collapsing V_{DD} Technique

E. Karl, ISSCC'12
Collapsing V_{DD} Technique

E. Karl, ISSCC'12
Negative BL

Nii, VLSI'08
Negative BL

- Arsovski, ISSCC'11
WL Underdrive

• Sensing appropriate WL voltage

Carlson, CICC'08

Nho, ISSCC'10
Capacitive Write Assist + WL Underdrive

S. Ohbayashi, VLSI 2006
Capacitive Write Assist (ISSCC’20)

- 5nm SRAM [J. Chang, ISSCC’20]
Pulsed WL/BL

Fig. 4: Pulsed BL (PBL) scheme

M. Khellah, VLSI 2006
Pulsing WL

- Sinangil, ISSCC’2011
Write Assist Techniques

- **Negative Bit-Line (NBL):**
 - increase PG1 and PU2 strength
- Improve both contention and recovery

NBL: increase PG1 strength

NBL: increase PU2 strength
ISSCC’18 - 10nm Read Assist

- Wordline underdrive

- WLUD-RA for improved stability margin (1.5% area)
ISSCC’18 - 10nm SRAM

- Transient voltage collapse

- WLUD-RA for improved stability margin (1.5% area)

- TVC-WA to reduce PU:PG contention (3.3% area)
SRAM Failure Rates

Readability, writeability, and read-stability failure rates for a 28nm 6T SRAM bitcell.
Effect of bitline capacitance
Effect of clock period

![Graph showing the effect of clock period on Bit Error Rate (BER) with varying Vdd values. The graph includes curves for Readability, Writeability, Read stability, 2Ghz, 250 Mhz, Static, and SNM with different markers and line styles.]
Effect of Assist Techniques

Zimmer, TCAS-I’12
How Do They Stack Up?

• 28nm bulk CMOS
SRAM In Practice

- 7nm AMD Zen2 (Singh, ISSCC’20)
SRAM In Practice

• 7nm AMD Zen2 (Singh, ISSCC’20)

- Moving bitline precharge to VDD creates both bitcell stability and writeability challenges
- High level of configurability allows for silicon flexibility

Controller pauses voltage increase and unsets superVminEn register before continuing to raise voltage
Controller pauses voltage increase and sets superVmaxEn register before continuing to raise voltage

VDD

VDDmax

superVminEn=1

VDD where VDD-VDDM=superVmaxThreshold

VDDM

superVmaxEn=1

VDD where VDD-VDDM=superVminThreshold

VDDmin

Controller pauses voltage increase and unsets superVminEn register before continuing to raise voltage
Controller pauses voltage increase and sets superVmaxEn register before continuing to raise voltage

Fuses

System Management

Assist controller

VDD

Programming details

Assist configurations

SRAMs
Next Lecture

• More peripheral circuits
• ECC
• Alternatives to 6T SRAM