Optical Packet Switching

Yu Ben, Qian Ying Tang May 2, 2006

Outline

- Packet Switching Overview
- Optical Packet Switching
 - SJ Yoo (UC Davis)
 - Architecture
 - Benefits
 - Social and Economic Impacts
- Conclusion

What is Packet Switching

A set of rules

- Governs how messages should be transmitted between two points
- Divides long message into pieces-PACKETS.
- Transmission is connectionless
- Requires routers and routing algorithms

Open Systems Interconnection Model

Packet Switching-Demo

Want to transmit a file between host A and D

Packet Switching-Demo

File is split into packets

Packet Switching-Demo

Headers contain destination/order info is appended

Why Packet Switching

- Dynamic bandwidth allocation
 - Links will be occupied on demand
 - Alternative routes when congestion occurred
- Packets from different sources can coexist on the same customer-to-network physical link without interference.
- Allows terminals operating at different bit rates to internet-work with each other
 - Routers will buffer the packets from a higher bit rate hosts
- Yet, Problems....

Network Topology

Optical Transmission Media

- In MAN, The link between nodes are optical fibers
- Packets are optical signals
- O-E-O conversion required at the interface
- Large Overhead

Solution: Optical label Switching

- Place optical label at subcarrier frequency
- Routing information can be extracted by converting header only
- Conversion will leave payload untouched

Architecture of OLS

Elements of OLS networks

Edge Router

- Transmitting Node:
 - Append optical label @ subcarrier frequency
 - Conversion to Optical Signal
- Receiving Node
 - Remove optical Label
 - Conversion back to Electrical Signal

Core Router

Perform the Switching

Transmitting Node

- DFB Laser Source
- Modulation Signal
 - Data @higher Bit Rate
 - Header @lower Bit Rate
- Output
 - Modulated Optical Signal

Core Router

- Switching node Architecture
- Senders/Receivers can be on different wavelength

Switch Node Controller

- Network Control Units
 - Communicate with other nodes / update Forwarding Table
- Forwarding units
 - Header Buffer: One per wavelength
 - Forwarding table Interface: Obtain Address Info
 - Priority Control and Decision

Label Swapping

- In Electrical Packet switching, headers may be modified as passing a switch
 - The TTL (time to live) bits in the IP header to prevent a packet looping in the network forever
 - Interfacing between one type of network to another

- Require the optical label to be writable/rewritable
 - Modify the switching node
 - Add a label writer

Label Rewriter Details

Receiving Node

Data payload Receiver
Photo detector
Amplifier & LPF

Subcarrier/header Receiver
Homodyne Detection

BER test of cascaded OLS Router

Network Features of OLS

- All-optical between end stations
 - Once a packet leaves a host computer, it sees one long fiber
- Header is decoupled from the data payload
 - They can be in different bit rate
 - Payload may not be digitally encoded
- Packet on a given path experiences the same delay
- When a packet is blocked at a given node, it can be routed at a different path or dropped
 - Timing consideration
- Contention control by wavelength deflection
 - When packets from multiple users arrive at a switch node at the same time, contention happens
 - Can route a packet to a different, less loaded wavelength

Social/Economic Impacts of OLS

- Bridging the Gap between the IP protocol and WDM at the edge of the network
- Replace the existing ring topology in MAN with optical switching
- Foundation for next-generation service provider
 - All optical network
 - Fast
 - Simple to manage

Summary

- Electrical packet switching is not compatible with optical transmission
- Optical label packet switching
 - Avoid OEO conversion
 - Compatible with various network layer protocols
 - Optical label swapping
 - Compatible with WDM
 - Multi-dimensional contention solution
 - Increased complexity

Optical single side band (OSSB)

- Double Side band labels
 - Harder to Erase by Fiber Fabry-Perot Filter
 - Requires matching FSR AND
 - Requires the notch filter to have a sharp and narrow notch
- Single Side band Labels

Spectra in optical label swapping

 Spectra (a) before and (b) after the OSSB subcarrier label is suppressed.

Extension to Multi wavelength/protocol

