Optimal Routing Control: Repeated Game Approach

Richard J. La and Venkat Anantharam

Motivation
- Bandwidth demand → efficient routing schemes
- Network access providers compete to offer services and to minimize their costs
- Providers interact several times before game changes and they should have an incentive to cooperate
- Nash equilibrium point (NEP)
- Fixed demand: total system cost measures network efficiency
- Goal: move towards the system minimum and stay in NEP's
- reduce the costs for some, others do not want to deviate

Repeated Games
- Interaction occurs several times
 - strategy: history-based plan of actions
 - perfect information games (all actions taken known)
 - infinite games (game end is unknown)
- Discounted games:
 \[r_i = (1-\delta) \sum \delta^n r_i(s_i(n),...,s_f(n)) \]
- NEPs
 - not only repeating a stage game NEP
 - problem with NEP's: an action may be irrational
 SPNEP: NEP for every possible game continuation

Games - Results
- Simultaneous strategy:
 \[f \in F^1 \times \cdots \times F^f \]
- **Rosen's theorem** (static game)
 \[j^i \text{ is continuous in } f \text{ and convex in } F^i \]
 \[\text{NEP existence} \]
- **NEP uniqueness**
- **i-th player's reservation cost**
 \[V_i = \max_{f \in F^f} \min_{f^i \in F^i} J^i(f^i, f^{-i}) \]
- **folk theorem** (repeated game)
 - For each vector \[v_i \leq v_f \], there is \[\delta < 1 \text{ s.t. } \delta \in (\delta, 1) \]
 - there is a NEP with the cost vector \[v \]

Cooperation in Repeated Games
- \[\delta \to 0: \text{ static game} \]
- \[\delta \to 1: \text{ average rewards per unit time} \]
 - rational (SPNEP) strategies that enforce cooperation
- Main idea: any gain from a deviation will be outweighed by the penalty in the stages after the deviation
- Prisoners' Dilemma example:
 - credible threat strategy: "I will choose to mum as long as you do. If you choose fink once, I will fink thereafter."
 - if \[\delta \] is sufficiently large this strategy is SPNEP and enforces the decisions (mum,mum) forever

Games – Results (2)
- **Friedman's theorem** (repeated)
 Let a stage game NEP has cost \(e \)
 - For each vector \(v_i \leq e_f \) there is \(\delta < 1 \text{ s.t. } \delta \in (\delta, 1) \)
 - there is a SPNEP with the cost vector \(v \)
- **Fudenberg-Maskin's theorem** (repeated game)
 Let \(v \) be the reservation cost
 - If the set \(\{ v_i \leq v_f, 1 \leq i \leq f \} \) is fully dimensional
 - there is a SPNEP with the cost vector \(v \)
Main Problem
- Existence of SPNEPs that cost less than single stage NEPs
- Two-node parallel link networks
- General networks
 - single source-destination pair
 - multiple source-destination pairs

Parallel Links – Game Model
- I users with demand rates $r'_i, 1 \leq i \leq I$
- L links with capacities $C'_l, 1 \leq l \leq L$
- $R = \sum_{l=1}^{L} r'_l \leq \sum_{l=1}^{L} C'_l$ (stability constraint)
- f'_i: user i sends over link l
 - $f'_i > 0$ (nonnegativity), $\sum_{i=1}^{I} f'_i = r'_i$ (demand constraint)
 - f'_i: i-th user flow configuration, $f = (f'_1, \ldots, f'_I)$: flow configuration
 - f'_i: total flow on i-th link

Parallel Links – Cost Function
- Type-B cost functions
 - $V_i(l) = \sum_{l=1}^{L} f'_l (t'_l f'_l) L_i(l)$
 - $L_i(l)$ cost per unit flow is a function of the residual capacity $C'_l - f'_l$
 - $T_i(f'_i)$ is positive, strictly increasing in f'_i, and convex
 - $T_i(f'_i) \rightarrow \infty$, as $f'_i \rightarrow C'_l$

Parallel Links – Static Game
- Competitive Routing in Multiuser Communication Networks
 - [Orda, Rom, Shimkin]
- Rosen’s theorem
- Total operation cost $C(f) = \sum_{l=1}^{L} V_i(l)$
- Convex optimization
- NEPs are not efficient: can be far from optimum

Parallel Links – Repeated Game
- T_1: If δ is close to one there is an NEP \tilde{f} in the repeated game that achieves the minimum system cost C'
 - $\tilde{f} = (\tilde{f'}_1, \ldots, \tilde{f'}_I)$, $\tilde{f'}_i = \frac{C'_l f'_i}{R}$
 - Fairness: the same cost per unit flow for every user
 - If \tilde{f} is a stage game NEP then possibly $J'(\tilde{f}) > J'_{t}(\tilde{f})$

- T_2: If δ is close to one there is an SPNEP \tilde{f} in the repeated game that achieves the minimum system cost C' and the cost of each user is at most equal to its cost in the stage game NEP (for each i, $J'(\tilde{f}) \leq J'(\tilde{f}))$
 - If $\overline{C} > C'$ then $J'(\tilde{f}) < J'(\tilde{f})$
 - Decrease in the total system cost benefits all users

Single Source-Destination Pair
- Network model
 - topology: $G = (V, L)$, $E \subseteq V \times V$
 - same: demand, capacity model
 - Type-B cost function
 - different: paths share links
- Unique flow f' configuration with minimum cost C'
 - Assumption: two paths with different cost per unit flow

- T_3: If δ is close to one there is an NEP in the repeated game that achieves the minimum system cost C'
 - users with small demands use the paths with smallest cost per unit
- T_4: Any optimal NEP flow configuration is SPNEP
Multiple Source-Destination Pairs

- Different users have different SD pairs
- Uniqueness of the minimal cost configuration: open
- Negative result: uniqueness holds, but no matter how close is, NEP does not exist

\[C_1 = 8, C_2 = 8, C_3 = 50, C_4 = C_5 = 2000 \]

\[r_1 = 40, r_2 = 4.857 \]

Summary

<table>
<thead>
<tr>
<th>Unique optimal configuration</th>
<th>SPNEP</th>
<th>SPNEP cost less than in stage game</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel links</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Single SD pair</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Multiple SD pairs</td>
<td>?</td>
<td>NO</td>
</tr>
</tbody>
</table>

Discussion