Overview of Sensor Networks

Shyam Parekh & Pravin Varaiya
EECS 228A
October 14, 2003
Agenda

- Introduction
- Sensor Networks Architecture
- Physical Layer
- Data Link Layer
- Network Layer
- Transport Layer
- Application Layer
- Presentation Schedule
References*

- Scalable Routing Protocols for Mobile Ad Hoc Networks; X. Hong, K. Xu, M. Gerla; IEEE Network, July/August 2002.

* The lectures will make liberal use of drawings from the references
Introduction

- Enabling technologies for deployment of low-power and low-cost sensor nodes
 - Advances in wireless communications
 - Advances in Electronics

- Applications
 - Health
 - Military
 - Home
 - Commercial
 - ...

- Poised for tremendous impact
 - Brings together challenges of many fields like electronics, communication, software, business opportunities
Introduction – Main Tasks

- Key tasks performed by Sensor Nodes:
 - Sensing
 - Data Processing
 - Communication

- Networking is a distinguishing feature
Introduction – Distinguishing Features

- Differences between Sensor Networks and traditional Mobile Ad Hoc Networks (MANETs)
 - Much larger number of nodes
 - Dense deployment
 - Limited in power
 - Mainly use broadcast paradigm
 - Higher failure rate
 - No global identifiers
Sensor Network architecture
Introduction – Design Issues

- Key design issues
 - Fault tolerance
 - Scalability
 - Production cost
 - Hardware constraints
 - Network topology
 - Environment
 - Power consumption
Introduction: Protocol Stack

- Protocol stack for Sink and Sensor Nodes
 - Power management impact
 - Location impact
Physical Layer

- 915 MHz ISM is widely used
- Long distance wireless is expensive
 - Power needed behaves like d^n, where d is distance and $2 \leq n < 4$ and n is closer to 4 for near-ground channels
- Multihop networks can overcome shadowing and path loss effects
- Binary modulation is more power efficient
Data Link Layer

- Existing MAC protocols (why they can’t be used)
 - Central controlling agent
 - QoS and BW efficiency very important
 - Power efficiency of secondary importance
- Bluetooth and MANET closest cousins, still key differences
 - Dense deployment
 - Power conservation critical
 - Node failures
Data Link Layer: MAC

- MAC for Sensor Networks
 - Self-Organizing Medium Access Control for Sensor Networks (SMACS) and Eavesdrop-and-Register (EAR) Algorithm
 - CSMA-based Medium Access
 - Hybrid TDMA/FDMA-based

<table>
<thead>
<tr>
<th>MAC protocol</th>
<th>Channel access mode</th>
<th>Sensor network specifics</th>
<th>Power conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMACS and EAR [13]</td>
<td>Fixed allocation of duplex time slots at fixed frequency</td>
<td>Exploitation of large available bandwidth compared to sensor data rate</td>
<td>Random wake up during setup and turning radio off while idle</td>
</tr>
<tr>
<td>Hybrid TDMA/FDMA [8]</td>
<td>Centralized frequency and time division</td>
<td>Optimum number of channels calculated for minimum system energy</td>
<td>Hardware-based approach for system energy minimization</td>
</tr>
<tr>
<td>CSMA-based [9]</td>
<td>Contention-based random access</td>
<td>Application phase shift and pretransmit delay</td>
<td>Constant listening time for energy efficiency</td>
</tr>
</tbody>
</table>
Data Link Layer: MAC Considerations

- Key design consideration for MAC
 - Power saving modes of operation
 - Avoid turning on and off based on component characteristics
 - Error control
 - FEC is preferred over ARQ
Network Layer

Driving factors for design of Network Layer

- Power efficiency
- Data aggregation
- Attribute-based addressing and location awareness
Network Layer: Energy Efficient Routing

- Energy efficient routing
 - Maximum PA route: Sink-E-F-T
 - Minimum energy route: Sink-A-B-T
 - Minimum hop route: Sink-D-T
 - Maximum minimum PA node route: Sink-D-T
Network Layer: Proposed Schemes

- **Routing schemes**
 - Small Minimum Energy Communication Network (SMECN)
 - Create energy-efficient subgraph
 - Flooding
 - Deficiencies include implosion, overlap, resources blindness
 - Gossiping
 - Broadcast to randomly selected neighbor
 - Long propagation time
Network Layer: Proposed Schemes - 2

- Routing schemes
 - Sensor Protocol for Information via Negotiation (SPIN)
 - Low-energy Adaptive Clustering Hierarchy
 - Setup phase: Periodically select new clusterhead
 - Steady state phase
Network Layer: Proposed Schemes - 3

- Routing schemes
 - Directed Diffusion
 - Sink sends interest
 - Nodes store interest entry
 - Source setup gradient from source to sink
 - Rumor routing optimizes the interest indication phase

- Diagram:
 - Step 1: propagate interest
 - Step 2: set up gradient
 - Step 3: send data
Network Layer:
Proposed Schemes - 4

<table>
<thead>
<tr>
<th>Network layer scheme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMECN [18]</td>
<td>Creates a subgraph of the sensor network that contains the minimum energy path</td>
</tr>
<tr>
<td>Flooding</td>
<td>Broadcasts data to all neighbor nodes regardless if they receive it before or not</td>
</tr>
<tr>
<td>Gossiping [19]</td>
<td>Sends data to one randomly selected neighbor</td>
</tr>
<tr>
<td>SPIN [15]</td>
<td>Sends data to sensor nodes only if they are interested; has three types of messages (i.e., ADV, REQ, and DATA)</td>
</tr>
<tr>
<td>SAR [13]</td>
<td>Creates multiple trees where the root of each tree is one hop neighbor from the sink; selects a tree for data to be routed back to the sink according to the energy resources and additive QoS metric</td>
</tr>
<tr>
<td>LEACH [16]</td>
<td>Forms clusters to minimize energy dissipation</td>
</tr>
<tr>
<td>Directed diffusion [5]</td>
<td>Sets up gradients for data to flow from source to sink during interest dissemination</td>
</tr>
</tbody>
</table>
Transport and Application Layers

- Not much work on these layers
- UDP/TCP splitting along sensor node – sink – user is proposed
- Limited power and memory consideration for transport layer design
- Application layer ideas:
 - Sensor Management Protocol
 - Task Assignment and Data Advertisement Protocol
 - Sensor Query and Data Dissemination Protocol
Ongoing Research Projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Research Area</th>
<th>HTTP Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and task management planes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submicrowatt electronics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power sources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macro Motes (COTS Dust).</td>
<td></td>
</tr>
<tr>
<td>PACMAN</td>
<td>Mathematical framework that incorporates key features of computing nodes and</td>
<td>http://pacman.usc.edu</td>
</tr>
<tr>
<td></td>
<td>networking elements.</td>
<td></td>
</tr>
<tr>
<td>Dynamic Sensor Networks</td>
<td>Routing and power aware sensor management. Network services API.</td>
<td>http://www.east.isi.edu/DIV10/dsn/</td>
</tr>
<tr>
<td>Aware Home</td>
<td>Requisite technologies to create a home environment that can both perceive and</td>
<td>http://www.cc.gatech.edu/ice/ahri</td>
</tr>
<tr>
<td></td>
<td>assist its occupants.</td>
<td></td>
</tr>
</tbody>
</table>