A Short Tutorial on Game Theory

EE228a, Fall 2002 Dept. of EECS, U.C. Berkeley

Outline

- Introduction
- Complete-Information Strategic Games
 - Static Games
 - Repeated Games
 - Stackelberg Games
- Cooperative Games
 - Bargaining Problem
 - Coalitions

Outline

- Introduction
 - What is game theory about?
 - Relevance to networking research
 - Elements of a game
- Non-Cooperative Games
 - Static Complete-Information Games
 - Repeated Complete-Information Games
 - Stackelberg Games
- Cooperative Games
 - Nash's Bargaining Solution
 - Coalition: the Shapley Value

What Is Game Theory About?

- To understand how decision-makers interact
- A brief history
 - 1920s: study on strict competitions
 - 1944: Von Neumann and Morgenstern's book

Theory of Games and Economic Behavior

- After 1950s: widely used in economics, politics, biology...
 - Competition between firms
 - Auction design
 - Role of punishment in law enforcement
 - International policies
 - Evolution of species

Relevance to Networking Research

- Economic issues becomes increasingly important
 - Interactions between human users
 - congestion control
 - resource allocation
 - Independent service providers
 - Bandwidth trading
 - Peering agreements
- Tool for system design
 - Distributed algorithms
 - Multi-objective optimization
 - Incentive compatible protocols

Elements of a Game: Strategies

- Decision-maker's choice(s) in any given situation
- Fully known to the decision-maker
- Examples
 - Price set by a firm
 - Bids in an auction
 - Routing decision by a routing algorithm
- Strategy space: set of all possible actions
 - Finite vs infinite strategy space
- Pure *vs* mixed strategies
 - Pure: deterministic actions
 - Mixed: randomized actions

Elements of a Game: Preference and Payoff

- Preference
 - Transitive ordering among strategies

if a >> b, b >> c, then a >> c

- Payoff
 - An order-preserving mapping from preference to R^+

payoff action

- Example: in flow control, U(x) = log(1+x) - px

Rational Choice

- Two axiomatic assumptions on games
 - 1. In any given situation a decision-maker always chooses the action which is the best according to his/her preferences (a.k.a. rational play).
 - 2. Rational play is common knowledge among all players in the game.

Question: Are these assumptions reasonable?

Example: Prisoners' Dilemma

Different Types of Games

- Static *vs* multi-stage
 - Static: game is played only once
 - Prisoners' dilemma
 - Multi-stage: game is played in multiple rounds
 - Multi-round auctions, chess games
- Complete *vs* incomplete information
 - Complete info.: players know each others' payoffs
 - Prisoners' dilemma
 - Incomplete info.: other players' payoffs are not known
 - Sealed auctions

Representations of a Game

- Normal- vs extensive-form representation
 - Normal-form
 - like the one used in previous example
 - Extensive-form

Outline

- Introduction
- Complete-Information Strategic Games
 - Static Games
 - Repeated Games
 - Stackelberg Games
- Cooperative Games
 - Nash's Bargaining Problem
 - Coalitions: the Shapley Value

Static Games

- Model
 - Players know each others' payoffs
 - But do not know which strategies they would choose
 - Players simultaneously choose their strategies
 - ⇒ Game is over and players receive payoffs based on the <u>combination</u> of strategies just chosen
- Question of Interest:
 - What outcome would be produced by such a game?

Example: Cournot's Model of Duopoly

- Model (from Gibbons)
 - Two firms producing the same kind of product in quantities of q_1 and q_2 , respectively
 - Market clearing price $p=A-q_1-q_2$
 - Cost of production is C for both firms
 - Profit for firm *i*

 $J_i = p_i q_i - C q_i = (A - q_1 - q_2) q_i - C q_i$ = $(A - C - q_1 - q_2) q_i$

define $B \equiv A - C$

– Objective: choose q_i to maximize profit

$$q_i^* = argmax_{qi} (B - q_1 - q_2) q_i$$

A Simple Example: Solution

• Firm *i*'s best choice, given its competitor's *q*

$$\begin{cases} q_1^* = (B - q_2)/2 \\ q_2^* = (B - q_1)/2 \end{cases}$$

Solution to Static Games

- Nash Equilibrium (J. F. Nash, 1950)
 - Mathematically, a strategy profile $(s_1^*, ..., s_i^*, ..., s_n^*)$ is a Nash Equilibrium if for each player *i*

$$U_{i}(s_{1}^{*}, ..., s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, ..., s_{n}^{*}) \geq U_{i}(s_{1}^{*}, ..., s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, ..., s_{n}^{*})$$

for each feasible strategy s_i

- Plain English: a situation in which no player has incentive to deviate
- It's fixed-point solution to the following system of equations $s_i = argmax_s U_i(s_1, ..., s_{i-1}, s, s_{i+1}, ..., s_n), \forall i$
- Other solution concepts (see references)

An Example on Mixed Strategies

Pure-Strategy Nash Equilibrium may not exist

Cause: each player tries to outguess his opponent!

Example: Best Reply

- Mixed Strategies
 - Randomized actions to avoid being outguessed
- Players' strategies and expected payoffs
 - Players play H w.p. p and play T w.p. l-p
 - Expected payoff of Player A

 $p_a p_b + (1 - p_a) (1 - p_b) - p_a (1 - p_b) - p_b (1 - p_a)$ = $(1 - 2 p_b) + p_a (4p_b - 2)$

So ...

if $p_b > 1/2$, $p_a^* = 1$ (i.e. play H); if $p_b > 1/2$, $p_a^* = 0$ (i.e. play T); if $p_b = 1/2$, then playing either H or T is equally good

Example: Nash Equilibrium

Existence of Nash Equilibrium

• Finite strategy space (J. F. Nash, 1950)

A n-player game has at least one Nash equilibrium, possibly involving mixed strategy.

• Infinite strategy space (*R.B. Rosen, 1965*)

A pure-strategy Nash Equilibrium exists in a n-player concave game.

If the payoff functions satisfy diagonally strict concavity condition, then the equilibrium is unique.

 $(\underline{s}_{1} - \underline{s}_{2}) [r_{j} \nabla J_{j}(\underline{s}_{1})] + (\underline{s}_{2} - \underline{s}_{1}) [r_{j} \nabla J_{j}(\underline{s}_{2})] < 0$

Distributed Computation of Nash Equilibrium

- Nash equilibrium as result of "learning"
 - Players iteratively adjust their strategies based on locally available information
 - Equilibrium is reached if there is a steady state
- Two commonly used schemes

Convergence of Distributed Algorithms

• Algorithms may not converge for some cases

Suggested Readings

 J.F. Nash. "Equilibrium Points in N-Person Games." Proc. of National Academy of Sciences, vol. 36, 1950.

– A "must-read" classic paper

 R.B. Rosen. "Existence and Uniqueness of Equilibrium Points for Concave N-Person Games." Econometrica, vol. 33, 1965.

- Has many useful techniques

 A. Orda et al. "Competitive Routing in Multi-User Communication Networks." IEEE/ACM Transactions on Networking, vol. 1, 1993.

– Applies game theory to routing

• And many more...

Multi-Stage Games

- General model
 - Game is played in multiple rounds
 - Finite or infinitely many times
 - Different games could be played in different rounds
 - Different set of actions or even players
 - Different solution concepts from those in static games
 - Analogy: optimization *vs* dynamic programming
- Two special classes
 - Infinitely repeated games
 - Stackelberg games

Infinitely Repeated Games

- Model
 - A single-stage game is repeated infinitely many times
 - Accumulated payoff for a player

$$J = \tau_1 + \delta \tau_2 + \dots + \delta^{n-1} \tau_n + \dots = \Sigma_i \delta^{i-1} \tau_i$$

discount factor payoff from stage n

• Main theme: play socially more efficient moves

- Everyone promises to play a socially efficient move in each stage
- Punishment is used to deter "cheating"
- Example: justice system

Cournot's Game Revisited. I

- Cournot's Model
 - At equilibrium each firm produces B/3, making a profit of $B^2/9$
 - Not an "ideal" arrangement for either firm, because... If a central agency decides on production quantity q_m q_m =argmax (B-q) q = B/2so each firm should produce B/4 and make a profit of $B^2/8$
 - An aside: why *B*/4 is not played in the static game?
 If firm A produces B/4, *it is more profitable for firm B* to produce 3B/8 than B/4

Firm A then in turn produces 5B/16, and so on...

Cournot's Game Revisited. II

• Collaboration instead of competition

Q: Is it possible for two firms to reach an agreement to produce *B*/4 instead of *B*/3 each?

A: That would depend on how important future return is to each firm...

A firm has two choices in each round:

- Cooperate: produce B/4 and make profit $B^2/8$
- Cheat: produce 3B/8 and make profit 9B²/64
 But in the subsequent rounds, cheating will cause
 – its competitor to produce B/3 as punishment

- its own profit to drop back to $B^2/9$

Cournot's Game Revisited. III

- Is there any incentive for a firm not to cheat? Let's look at the accumulated payoffs:
 - If it cooperates:

 $S_c = (1 + \delta + \delta^2 + \delta^3 + \dots) B^2/8 = B^2/8(1 - \delta)$

- If it cheats:

 $S_d = 9B^2/64 + (\delta + \delta^2 + \delta^3 + ...) B^2/9$

 $= \{9/64 + \delta/9(1-\delta)\} B^2$

So it will not cheat if $S_c > S_d$. This happens only if $\delta > 9/17$.

- Conclusion
 - If future return is valuable enough to each player, then strategies exist for them to play socially efficient moves.

- Question: What happens if player cheats in a later round? $_{\text{EE228a, Fall 2002}}$

Strategies in Repeated Games

- A strategy
 - is no longer a single action
 - but a complete plan of actions
 - based on possible history of plays up to current stage
 - usually includes some punishment mechanism
 - Example: in Cournot's game, a player's strategy is

Produce B/4 in the first stage. In the nth stage, produce B/4 if both firms have produced B/4 in each of the n–1 previous stages; otherwise, produce B/3.

history

- punishment

Equilibrium in Repeated Games

- Subgame-perfect Nash equilibrium (SPNE)
 - A subgame starting at stage *n* is
 - *identical to the original infinite game*
 - associated with a particular sequence of plays from the first stage to stage n-1
 - A SPNE constitutes a Nash equilibrium in every subgame
- Why subgame perfect?
 - It is all about creditable threats:

Players believe the claimed punishments indeed will be carried out by others, when it needs to be evoked.

 So a creditable threat has to be a Nash equilibrium for the subgame.

Known Results for Repeated Games

• Friedman's Theorem (1971)

Let G be a single-stage game and $(e_1, ..., e_n)$ denote the payoff from a Nash equilibrium of G.

If $\underline{x} = (x_1, ..., x_n)$ is a feasible payoff from G such that $x_i \ge e_i$, $\forall i$, then there exists a subgame-perfect Nash equilibrium of the infinitely repeated game of G which achieves \underline{x} , provided that discount factor δ is close enough to one.

Assignment:

Apply this theorem to Cournot's game on an agreement other than B/4.

Suggested Readings

- J. Friedman. *"A Non-cooperative Equilibrium for Super-games."* Review of Economic Studies, vol. 38, 1971.
 - Friedman's original paper
- R. J. La and V. Anantharam. "Optimal Routing Control: Repeated Game Approach," IEEE Transactions on Automatic Control, March 2002.
 - Applies repeated game to improve the efficiency of competitive routing

Stackelberg Games

- Model
 - One player (leader) has dominant influence over another
 - Typically there are two stages
 - One player (leader) moves first
 - Then the other follows in the second stage
 - Can be generalized to have
 - multiple groups of players
 - Static games in both stages
- Main Theme
 - Leader plays by backwards induction, based on the anticipated behavior of his/her follower.

Stackelberg's Model of Duopoly

- Assumptions
 - Firm 1 chooses a quantity q_1 to produce
 - Firm 2 observes q_1 and then chooses a quantity q_2
- Outcome of the game
 - For any given q_1 , the best move for Firm 2 is

 $q_2^* = (B - q_1)/2$

– Knowing this, Firm 1 chooses q_1 to maximize

 $J_1 = (B - q_1 - q_2^*) q_1 = q_1(B - q_1)/2$

which yields

$$q_1^* = B/2$$
, and $q_2^* = B/4$
 $J_1^* = B^2/8$, and $J_2^* = B^2/16$

Suggested Readings

- Y. A. Korilis, A. A. Lazar and A. Orda. " Achieving Network Optima Using Stackelberg Routing Strategies." IEEE/ACM Trans on Networking, vol.5, 1997.
 - Network leads users to reach system optimal equilibrium in competitive routing.
- T. Basar and R. Srikant. *"Revenue Maximizing Pricing and Capacity Expansion in a Many-User Regime."* INFOCOM 2002, New York.
 - Network charges users price to maximize its revenue.

Outline

- Introduction
- Complete-Information Strategic Games
 - Static Games
 - Repeated Games
 - Stackelberg Games
- Cooperative Games
 - Nash's Bargaining Problem
 - Coalitions: the Shapley value

Cooperation In Games

- Incentive to cooperate
 - Static games often lead to inefficient equilibrium
 - Achieve more efficient outcomes by acting together
 - Collusion, binding contract, side payment...
- Pareto Efficiency

A solution is Pareto efficient if there is no other feasible solution in which some player is better off and no player is worse off.

- Pareto efficiency may be neither socially optimal nor fair
- Socially optimal \Rightarrow Pareto efficient
- Fairness issues
 - Reading assignment as an example

Nash's Bargaining Problem

- Model
 - Two players with interdependent payoffs U and V
 - Acting together they can achieve a set of feasible payoffs
 - The more one player gets, the less the other is able to get
 - And there are multiple Pareto efficient payoffs
- Q: which feasible payoff would they settle on?
 - Fairness issue
- Example (from Owen):
 - Two men try to decide how to split \$100
 - One is very rich, so that $U(x) \cong x$
 - The other has only \$1, so $V(x) \cong log(1+x) log1 = log(1+x)$
 - How would they split the money?

Intuition

- Feasible set of payoffs
 - Denote x the amount that the rich man gets
 - $-(u,v)=(x, log(101-x)), x \in [0,100]$

A fair split should satisfy $| \Delta u/u | = | \Delta v/v |$ Let $\Delta \rightarrow 0$, du/u = - dv/vOr du/u + dv/v = 0, or vdu+udv=0, or d(uv)=0. \Rightarrow Find the allocation which maximizes $U \times V$

 $\Rightarrow x^* = 76.8!$

Nash's Axiomatic Approach (1950)

- A solution (u*,v*) should be
 - Rational
 - $(u^*, v^*) \ge (u_0, v_0)$, where (u_0, v_0) is the worst payoffs that the players can get.
 - Feasible
 - $(u^*, v^*) \in S$, the set of feasible payoffs.
 - Pareto efficient
 - Symmetric
 - If *S* is such that $(u,v) \in S \Leftrightarrow (v,u) \in S$, then $u^* = v^*$.
 - Independent from linear transformations
 - Independent from irrelevant alternatives
 - Suppose $T \subset S$. If $(u^*, v^*) \in T$ is a solution to S, then (u^*, v^*) should also be a solution to T.

Results

- There is a <u>unique</u> solution which
 - satisfies the above axioms
 - maximizes the product of two players' additional payoffs

 $(u-u_0)(v-v_0)$

- This solution can be enforced by "threats"
 - Each player independently announces his/her threat
 - Players then bargain on their threats
 - If they reach an agreement, that agreement takes effect;
 - Otherwise, initially announced threats will be used
- Different fairness criteria can be achieved by changing the last axiom (see references)

Suggested Readings

- J. F. Nash. "*The Bargaining Problem.*" Econometrica, vol.18, 1950.
 - Nash's original paper. Very well written.
- X. Cao. "*Preference Functions and Bargaining Solutions."* Proc. of the 21th CDC, NYC, NY, 1982.
 - A paper which unifies all bargaining solutions into a single *framework*
- Z. Dziong and L.G. Mason. "Fair-Efficient Call Admission Control Policies for Broadband Networks – a Game Theoretic Framework," IEEE/ACM Trans. On Networking, vol.4, 1996.
 - Applies Nash's bargaining solution to resource allocation problem in admission control (multi-objective optimization)

Coalitions

- Model
 - Players (n>2) N form coalitions among themselves
 - A coalition is any nonempty subset of N
 - Characteristic function V defines a game

V(S)=payoff to S in the game between S and N-S, $\forall S \subset N$ V(N)=total payoff achieved by all players acting together $V(\cdot)$ is assumed to be super-additive $\forall S, T \subset N, V(S+T) \ge V(S) + V(T)$

- Questions of Interest
 - Condition for forming stable coalitions
 - When will a single coalition be formed?
 - How to distribute payoffs among players in a fair way?

Core Sets

• Allocation $X = (x_1, \dots, x_n)$

 $x_i \ge V(\{i\}), \forall i \in \mathbb{N}; \quad \Sigma_{i \in \mathbb{N}} x_i = V(\mathbb{N}).$

• The core of a game

a set of allocation which satisfies $\sum_{i \in S} x_i \ge V(S)$, $\forall S \subset N$

 \Rightarrow If the core is nonempty, a single coalition can be formed

- An example
 - A Berkeley landlord (L) is renting out a room
 - *Al* (*A*) and *Bob* (*B*) are willing to rent the room at \$600 and \$800, respectively
 - Who should get the room at what rent?

Example: Core Set

- Characteristic function of the game
 - V(L) = V(A) = V(B) = V(A+B) = 0
 - Coalition between L and A or L and B

If rent = x, then L's payoff = x, A's payoff = 600 - xso V(L+A)=600. Similarly, V(L+B)=800

- Coalition among *L*, *A* and *B*: V(L+A+B)=800
- The core of the game

 $\begin{cases} x_L + x_A \ge 600 \\ x_L + x_B \ge 800 \\ x_L + x_A + x_B = 800 \end{cases} \implies core = \{(y, 0, 800 - y), 600 \le y \le 800\}$

Fair Allocation: the Shapley Value

- Define solution for player *i* in game V by $P_i(V)$
- Shapley's axioms
 - P_i 's are independent from permutation of labels
 - Additive: if U and V are any two games, then

 $P_i(U+V) = P_i(U) + P_i(V), \forall i \in \mathbb{N}$

- *T* is a carrier of *N* if $V(S \cap T) = V(S)$, $\forall S \subset N$. Then for any carrier *T*, $\Sigma_{i \in T} P_i = V(T)$.
- Unique solution: Shapley's value (1953)

 $P_{i} = \sum_{S \subset N} \frac{(|S/-1|! (N-|S/)!}{N!} [V(S) - V(S - \{i\})]$

• Intuition: a probabilistic interpretation

Suggested Readings

- L. S. Shapley. "A Value for N-Person Games." Contributions to the Theory of Games, vol.2, Princeton Univ. Press, 1953.
 - Shapley's original paper.
- P. Linhart *et al.* "*The Allocation of Value for Jointly Provided Services.*" Telecommunication Systems, vol. 4, 1995.

- Applies Shapley's value to caller-ID service.

- R. J. Gibbons *et al.* "*Coalitions in the International Network.*" Tele-traffic and Data Traffic, ITC-13, 1991.
 - *How coalition could improve the revenue of international telephone carriers.*

Summary

- Models
 - Strategic games
 - Static games, multi-stage games
 - Cooperative games
 - Bargaining problem, coalitions
- Solution concepts
 - Strategic games
 - Nash equilibrium, Subgame-perfect Nash equilibrium
 - Cooperative games
 - Nash's solution, Shapley value
- Application to networking research
 - Modeling and design

References

• R. Gibbons, "*Game Theory for Applied Economists*," Princeton Univ. Press, 1992.

- an easy-to-read introductory to the subject

 M. Osborne and A. Rubinstein, "A Course in Game Theory," MIT Press, 1994.

- a concise but rigorous treatment on the subject

• G. Owen, "Game Theory," Academic Press, 3rd ed., 1995.

– a good reference on cooperative games

- D. Fudenberg and J. Tirole, "Game Theory," MIT Press, 1991.
 - a complete handbook; "the bible for game theory"
 - http://www.netlibrary.com/summary.asp?id=11352