A Short Tutorial on Game Theory

EE228a, Fall 2002
Dept. of EECS, U.C. Berkeley

Outline

- Introduction
- Complete-Information Strategic Games
- Static Games
- Repeated Games
- Stackelberg Games
- Cooperative Games
- Bargaining Problem
- Coalitions

Outline

- Introduction
- What is game theory about?
- Relevance to networking research
- Elements of a game
- Non-Cooperative Games
- Static Complete-I nformation Games
- Repeated Complete-I nformation Games
- Stackelberg Games
- Cooperative Games
- Nash's Bargaining Solution
- Coalition: the Shapley Value

What Is Game Theory About?

- To understand how decision-makers interact
- A brief history
- 1920s: study on strict competitions
- 1944: Von Neumann and Morgenstern's book

Theory of Games and Economic Behavior

- After 1950s: widely used in economics, politics, biology...
- Competition between firms
- Auction design
- Role of punishment in law enforcement
- International policies
- Evolution of species

Relevance to Networking Research

- Economic issues becomes increasingly important
- Interactions between human users
- congestion control
- resource allocation
- Independent service providers
- Bandwidth trading
- Peering agreements
- Tool for system design
- Distributed algorithms
- Multi-objective optimization
- Incentive compatible protocols

Elements of a Game: Strategies

- Decision-maker's choice(s) in any given situation
- Fully known to the decision-maker
- Examples
- Price set by a firm
- Bids in an auction
- Routing decision by a routing algorithm
- Strategy space: set of all possible actions
- Finite vs infinite strategy space
- Pure vs mixed strategies
- Pure: deterministic actions
- Mixed: randomized actions

Elements of a Game: Preference and Payoff

- Preference
- Transitive ordering among strategies

$$
\text { if } a \gg b, b \gg c \text {, then } a \gg c
$$

- Payoff
- An order-preserving mapping from preference to \boldsymbol{R}^{+}
- Example: in flow control, $U(x)=\log (1+x)-p x$

Rational Choice

- Two axiomatic assumptions on games

$$
\begin{aligned}
& \text { 1. In any given situation a decision-maker always } \\
& \text { chooses the action which is the best according to } \\
& \text { his/her preferences (a.k.a. rational play). } \\
& \text { 2. Rational play is common knowledge among all } \\
& \text { players in the game. }
\end{aligned}
$$

Question: Are these assumptions reasonable?

Example: Prisoners' Dilemma

Different Types of Games

- Static vs multi-stage
- Static: game is played only once
- Prisoners' dilemma
- Multi-stage: game is played in multiple rounds
- Multi-round auctions, chess games
- Complete vs incomplete information
- Complete info.: players know each others' payoffs
- Prisoners' dilemma
- Incomplete info.: other players' payoffs are not known
- Sealed auctions

Representations of a Game

- Normal- vs extensive-form representation
- Normal-form
- like the one used in previous example
- Extensive-form

Outline

- I ntroduction
- Complete-Information Strategic Games
- Static Games
- Repeated Games
- Stackelberg Games
- Cooperative Games
- Nash's Bargaining Problem
- Coalitions: the Shapley Value

Static Games

- Model
- Players know each others' payoffs
- But do not know which strategies they would choose
- Players simultaneously choose their strategies
\Rightarrow Game is over and players receive payoffs based on the combination of strategies just chosen
- Question of Interest:
- What outcome would be produced by such a game?

Example: Cournot’s Model of Duopoly

- Model (from Gibbons)
- Two firms producing the same kind of product in quantities of q_{1} and q_{2}, respectively
- Market clearing price $p=A-q_{1}-q_{2}$
- Cost of production is C for both firms
- Profit for firm i

$$
\begin{aligned}
J_{i} & =p_{i} q_{i}-C q_{i}=\left(A-q_{1}-q_{2}\right) q_{i}-C q_{i} \\
& =\left(A-C-q_{1}-q_{2}\right) q_{i} \\
\text { define } B & \equiv A-C
\end{aligned}
$$

- Objective: choose q_{i} to maximize profit

$$
q_{i}^{*}=\operatorname{argmax}_{q i}\left(B-q_{1}-q_{2}\right) q_{i}
$$

A Simple Example: Solution

- Firm i 's best choice, given its competitor's q

$$
\left\{\begin{array}{l}
q_{1}{ }^{*}=\left(B-q_{2}\right) / 2 \\
q_{2}{ }^{*}=\left(B-q_{1}\right) / 2
\end{array}\right.
$$

Solution to Static Games

- Nash Equilibrium (J. F. Nash, 1950)
- Mathematically, a strategy profile $\left(s_{1}{ }^{*}, \ldots, s_{i}{ }^{*}, \ldots, s_{n}{ }^{*}\right)$ is a Nash Equilibrium if for each player i

$$
\begin{aligned}
& U_{i}\left(s_{1}{ }^{*}, \ldots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \ldots, s_{n}{ }^{*}\right) \\
& \quad \geq U_{i}\left(s_{1}{ }^{*}, \ldots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \ldots, s_{n}{ }^{*}\right),
\end{aligned}
$$

for each feasible strategy s_{i}

- Plain English: a situation in which no player has incentive to deviate
- It's fixed-point solution to the following system of equations

$$
s_{i}=\operatorname{argmax}_{s} U_{i}\left(s_{1}, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_{n}\right), \forall i
$$

- Other solution concepts (see references)

An Example on Mixed Strategies

- Pure-Strategy Nash Equilibrium may not exist

Cause: each player tries to outguess his opponent!

Example: Best Reply

- Mixed Strategies
- Randomized actions to avoid being outguessed
- Players' strategies and expected payoffs
- Players play H w.p. p and play T w.p. $1-p$
- Expected payoff of Player A

$$
\begin{aligned}
& p_{a} p_{b}+\left(1-p_{a}\right)\left(1-p_{b}\right)-p_{a}\left(1-p_{b}\right)-p_{b}\left(1-p_{a}\right) \\
= & \left(1-2 p_{b}\right)+p_{a}\left(4 p_{b}-2\right)
\end{aligned}
$$

So ...

$$
\begin{aligned}
& \text { if } \left.p_{b}>1 / 2, p_{a}^{*}=1 \text { (i.e. play } H\right) \\
& \text { if } p_{b}>1 / 2, p_{a}^{*}=0(\text { i.e. play } T) ; \\
& \text { if } p_{b}=1 / 2, \text { then playing either } H \text { or } T \text { is equally good }
\end{aligned}
$$

Example: Nash Equilibrium

Existence of Nash Equilibrium

- Finite strategy space (J. F. Nash, 1950)

A n-player game has at least one Nash equilibrium, possibly involving mixed strategy.

- Infinite strategy space (R.B. Rosen, 1965)

A pure-strategy Nash Equilibrium exists in a n-player concave game.

If the payoff functions satisfy diagonally strict concavity condition, then the equilibrium is unique.

$$
\left(\underline{s}_{1}-\underline{s}_{2}\right)\left[r_{j} \nabla J_{j}\left(\underline{s}_{1}\right)\right]+\left(\underline{s}_{2}-\underline{s}_{1}\right)\left[r_{j} \nabla J_{j}\left(\underline{s}_{2}\right)\right]<0
$$

Distributed Computation of Nash Equilibrium

- Nash equilibrium as result of "learning"
- Players iteratively adjust their strategies based on locally available information
- Equilibrium is reached if there is a steady state
- Two commonly used schemes

Convergence of Distributed Algorithms

- Algorithms may not converge for some cases

Suggested Readings

- J.F. Nash. "Equilibrium Points in N-Person Games." Proc. of National Academy of Sciences, vol. 36, 1950.
- A "must-read" classic paper
- R.B. Rosen. "Existence and Uniqueness of Equilibrium Points for Concave N-Person Games." Econometrica, vol. 33, 1965.
- Has many useful techniques
- A. Orda et al. "Competitive Routing in Multi-User Communication Networks." IEEE/ACM Transactions on Networking, vol. 1, 1993.
- Applies game theory to routing
- And many more...

Multi-Stage Games

- General model
- Game is played in multiple rounds
- Finite or infinitely many times
- Different games could be played in different rounds
- Different set of actions or even players
- Different solution concepts from those in static games
- Analogy: optimization vs dynamic programming
- Two special classes
- Infinitely repeated games
- Stackelberg games

Infinitely Repeated Games

- Model
- A single-stage game is repeated infinitely many times
- Accumulated payoff for a player

- Main theme: play socially more efficient moves
- Everyone promises to play a socially efficient move in each stage
- Punishment is used to deter "cheating"
- Example: justice system

Cournot’s Game Revisited. I

- Cournot's Model
- At equilibrium each firm produces $B / 3$, making a profit of $B^{2} / 9$
- Not an "ideal" arrangement for either firm, because...

If a central agency decides on production quantity q_{m}

$$
q_{m}=\operatorname{argmax}(B-q) q=B / 2
$$

so each firm should produce B/4 and make a profit of $B^{2} / 8$

- An aside: why $B / 4$ is not played in the static game?

If firm A produces $B / 4$, it is more profitable for firm B
to produce $3 B / 8$ than $B / 4$
Firm A then in turn produces 5B/16, and so on...

Cournot's Game Revisited. II

- Collaboration instead of competition

Q: Is it possible for two firms to reach an agreement to produce B/4 instead of B/3 each?
A: That would depend on how important future return is to each firm...

A firm has two choices in each round:

- Cooperate: produce B/4 and make profit $B^{2} / 8$
- Cheat: produce 3B/8 and make profit 9B²/64

But in the subsequent rounds, cheating will cause

- its competitor to produce B/3 as punishment
- its own profit to drop back to $B^{2} / 9$

Cournot's Game Revisited. III

- Is there any incentive for a firm not to cheat?

Let's look at the accumulated payoffs:

- If it cooperates:

$$
S_{c}=\left(1+\delta+\delta^{2}+\delta^{3}+\ldots\right) B^{2} / 8=B^{2} / 8(1-\delta)
$$

- If it cheats:

$$
\begin{aligned}
S_{d} & =9 B^{2} / 64+\left(\delta+\delta^{2}+\delta^{3}+\ldots\right) B^{2} / 9 \\
& =\{9 / 64+\delta / 9(1-\delta)\} B^{2}
\end{aligned}
$$

So it will not cheat if $S_{c}>S_{d}$. This happens only if $\delta>9 / 17$.

- Conclusion
- If future return is valuable enough to each player, then strategies exist for them to play socially efficient moves.
- Question: What happens if player cheats in a later round?

Strategies in Repeated Games

- A strategy
- is no longer a single action
- but a complete plan of actions
- based on possible history of plays up to current stage
- usually includes some punishment mechanism
- Example: in Cournot's game, a player's strategy is

Equilibrium in Repeated Games

- Subgame-perfect Nash equilibrium (SPNE)
- A subgame starting at stage n is
- identical to the original infinite game
- associated with a particular sequence of plays from the first stage to stage n-1
- A SPNE constitutes a Nash equilibrium in every subgame
- Why subgame perfect?
- It is all about creditable threats:

Players believe the claimed punishments indeed will
be carried out by others, when it needs to be evoked.

- So a creditable threat has to be a Nash equilibrium for the subgame.

Known Results for Repeated Games

- Friedman's Theorem (1971)

Let G be a single-stage game and $\left(e_{1}, \ldots, e_{n}\right)$ denote the payoff from a Nash equilibrium of G.
If $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a feasible payoff from G such that $x_{i} \geq e_{i}, \forall i$, then there exists a subgame-perfect Nash equilibrium of the infinitely repeated game of G which achieves \underline{x}, provided that discount factor δ is close enough to one.

Assignment:
Apply this theorem to Cournot's game on an agreement other than $B / 4$.

Suggested Readings

- J. Friedman. "A Non-cooperative Equilibrium for Supergames," Review of Economic Studies, vol. 38, 1971.
- Friedman's original paper
- R. J. La and V. Anantharam. "Optimal Routing Control: Repeated Game Approach, "IEEE Transactions on Automatic Control, March 2002.
- Applies repeated game to improve the efficiency of competitive routing

Stackelberg Games

- Model
- One player (leader) has dominant influence over another
- Typically there are two stages
- One player (leader) moves first
- Then the other follows in the second stage
- Can be generalized to have
- multiple groups of players
- Static games in both stages
- Main Theme
- Leader plays by backwards induction, based on the anticipated behavior of his/her follower.

Stackelberg's Model of Duopoly

- Assumptions
- Firm 1 chooses a quantity q_{1} to produce
- Firm 2 observes q_{1} and then chooses a quantity q_{2}
- Outcome of the game
- For any given q_{1}, the best move for Firm 2 is

$$
q_{2}^{*}=\left(B-q_{1}\right) / 2
$$

- Knowing this, Firm 1 chooses q_{1} to maximize

$$
J_{1}=\left(B-q_{1}-q_{2}{ }^{*}\right) q_{1}=q_{1}\left(B-q_{1}\right) / 2
$$

which yields

$$
\begin{aligned}
& q_{1}{ }^{*}=B / 2, \text { and } q_{2}{ }^{*}=B / 4 \\
& J_{1}{ }^{*}=B^{2} / 8, \text { and } J_{2}^{*}=B^{2} / 16
\end{aligned}
$$

Suggested Readings

- Y. A. Korilis, A. A. Lazar and A. Orda. " Achieving Network Optima Using Stackelberg Routing Strategies. " IEEE/ACM Trans on Networking, vol.5, 1997.
- Network leads users to reach system optimal equilibrium in competitive routing.
- T. Basar and R. Srikant. "Revenue Maximizing Pricing and Capacity Expansion in a Many-User Regime. " I NFOCOM 2002, New York.
- Network charges users price to maximize its revenue.

Outline

- Introduction
- Complete-Information Strategic Games
- Static Games
- Repeated Games
- Stackelberg Games
- Cooperative Games
- Nash's Bargaining Problem
- Coalitions: the Shapley value

Cooperation In Games

- Incentive to cooperate
- Static games often lead to inefficient equilibrium
- Achieve more efficient outcomes by acting together
- Collusion, binding contract, side payment...
- Pareto Efficiency

A solution is Pareto efficient if there is no other feasible solution in which some player is better off and no player is worse off.

- Pareto efficiency may be neither socially optimal nor fair
- Socially optimal \Rightarrow Pareto efficient
- Fairness issues
- Reading assignment as an example

Nash's Bargaining Problem

- Model
- Two players with interdependent payoffs U and V
- Acting together they can achieve a set of feasible payoffs
- The more one player gets, the less the other is able to get
- And there are multiple Pareto efficient payoffs
- Q: which feasible payoff would they settle on?
- Fairness issue
- Example (from Owen):
- Two men try to decide how to split \$100
- One is very rich, so that $U(x) \cong x$
- The other has only $\$ 1$, so $V(x) \cong \log (1+x)-\log 1=\log (1+x)$
- How would they split the money?

Intuition

- Feasible set of payoffs
- Denote x the amount that the rich man gets

$$
-(u, v)=(x, \log (101-x)), x \in[0,100]
$$

Nash's Axiomatic Approach (1950)

- A solution $\left(u^{*}, v^{*}\right)$ should be
- Rational
- $\left(u^{*}, v^{*}\right) \geq\left(u_{0}, v_{0}\right)$, where $\left(u_{0}, v_{0}\right)$ is the worst payoffs that the players can get.
- Feasible
- $\left(u^{*}, v^{*}\right) \in S$, the set of feasible payoffs.
- Pareto efficient
- Symmetric
- If S is such that $(u, v) \in S \Leftrightarrow(v, u) \in S$, then $u^{*}=v^{*}$.
- Independent from linear transformations
- Independent from irrelevant alternatives
- Suppose $T \subset S$. If $\left(u^{*}, v^{*}\right) \in T$ is a solution to S, then $\left(u^{*}, v^{*}\right)$ should also be a solution to T.

Results

- There is a unique solution which
- satisfies the above axioms
- maximizes the product of two players' additional payoffs

$$
\left(u-u_{0}\right)\left(v-v_{0}\right)
$$

- This solution can be enforced by "threats"
- Each player independently announces his/her threat
- Players then bargain on their threats
- If they reach an agreement, that agreement takes effect;
- Otherwise, initially announced threats will be used
- Different fairness criteria can be achieved by changing the last axiom (see references)

Suggested Readings

- J. F. Nash. "The Bargaining Problem." Econometrica, vol.18, 1950.
- Nash's original paper. Very well written.
- X. Cao. "Preference Functions and Bargaining Solutions." Proc. of the 21th CDC, NYC, NY, 1982.
- A paper which unifies all bargaining solutions into a single framework
- Z. Dziong and L.G. Mason. "Fair-Efficient Call Admission

Control Policies for Broadband Networks - a Game Theoretic Framework," IEEE/ACM Trans. On Networking, vol.4, 1996.

- Applies Nash's bargaining solution to resource allocation problem in admission control (multi-objective optimization)

Coalitions

- Model
- Players ($\mathrm{n}>2$) N form coalitions among themselves
- A coalition is any nonempty subset of N
- Characteristic function V defines a game

$$
V(S)=\text { payoff to } S \text { in the game between } S \text { and } N-S, \forall S \subset N
$$

$V(N)=$ total payoff achieved by all players acting together
$V(\cdot)$ is assumed to be super-additive

$$
\forall S, T \subset N, V(S+T) \geq V(S)+V(T)
$$

- Questions of Interest
- Condition for forming stable coalitions
- When will a single coalition be formed?
- How to distribute payoffs among players in a fair way?

Core Sets

- Allocation $X=\left(x_{1}, \ldots, x_{n}\right)$

$$
x_{i} \geq V(\{i\}), \forall i \in N ; \quad \sum_{i \in N} x_{i}=V(N) .
$$

- The core of a game
a set of allocation which satisfies $\Sigma_{i \in S} x_{i} \geq V(S), \forall S \subset N$
\Rightarrow If the core is nonempty, a single coalition can be formed
- An example
- A Berkeley landlord (L) is renting out a room
- $A l(A)$ and $B o b(B)$ are willing to rent the room at $\$ 600$ and \$800, respectively
- Who should get the room at what rent?

Example: Core Set

- Characteristic function of the game
- $V(L)=V(A)=V(B)=V(A+B)=0$
- Coalition between L and A or L and B

$$
\begin{aligned}
& \text { If rent }=x \text {, then L's payoff }=x \text {, A's payoff }=600-x \\
& \text { so } V(L+A)=600 . \text { Similarly, } V(L+B)=800
\end{aligned}
$$

- Coalition among L, A and $B: V(L+A+B)=800$
- The core of the game

$$
\left\{\begin{array}{l}
x_{L}+x_{A} \geq 600 \\
x_{L}+x_{B} \geq 800 \\
x_{L}+x_{A}+x_{B}=800
\end{array} \Rightarrow \text { core }=\{(y, 0,800-y), 600 \leq y \leq 800\}\right.
$$

Fair Allocation: the Shapley Value

- Define solution for player i in game V by $P_{i}(V)$
- Shapley's axioms
- P_{i} 's are independent from permutation of labels
- Additive: if U and V are any two games, then

$$
P_{i}(U+V)=P_{i}(U)+P_{i}(V), \forall i \in N
$$

- T is a carrier of N if $V(S \cap \mathrm{~T})=V(S), \forall S \subset N$. Then for any carrier $T, \Sigma_{i \in T} P_{i}=V(T)$.
- Unique solution: Shapley's value (1953)

$$
P_{i}=\Sigma_{S \subset N} \frac{(|S|-1)!(N-|S|)!}{N!}[V(S)-V(S-\{i\})]
$$

- Intuition: a probabilistic interpretation

Suggested Readings

- L. S. Shapley. "A Value for N-Person Games," Contributions to the Theory of Games, vol.2, Princeton Univ. Press, 1953.
- Shapley's original paper.
- P. Linhart et al. "The Allocation of Value for J ointly

Provided Services." Telecommunication Systems, vol. 4, 1995.

- Applies Shapley's value to caller-ID service.
- R. J. Gibbons et al. "Coalitions in the International Network." Tele-traffic and Data Traffic, ITC-13, 1991.
- How coalition could improve the revenue of international telephone carriers.

Summary

- Models
- Strategic games
- Static games, multi-stage games
- Cooperative games
- Bargaining problem, coalitions
- Solution concepts
- Strategic games
- Nash equilibrium, Subgame-perfect Nash equilibrium
- Cooperative games
- Nash's solution, Shapley value
- Application to networking research
- Modeling and design

References

- R. Gibbons, "Game Theory for Applied Economists," Princeton Univ. Press, 1992.
- an easy-to-read introductory to the subject
- M. Osborne and A. Rubinstein, "A Course in Game Theory," MIT Press, 1994.
- a concise but rigorous treatment on the subject
- G. Owen, "Game Theory," Academic Press, 3rd ed., 1995.
- a good reference on cooperative games
- D. Fudenberg and J. Tirole, "Game Theory," MIT Press, 1991.
- a complete handbook; "the bible for game theory"
- http://www.netlibrary.com/summary.asp?id=11352

