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Abstract—This paper presents a new approach to single-image
superresolution, based upon sparse signal representation. Re-
search on image statistics suggests that image patches can be
well-represented as a sparse linear combination of elements from
an appropriately chosen over-complete dictionary. Inspired by
this observation, we seek a sparse representation for each patch
of the low-resolution input, and then use the coefficients of this
representation to generate the high-resolution output. Theoretical
results from compressed sensing suggest that under mild condi-
tions, the sparse representation can be correctly recovered from
the downsampled signals. By jointly training two dictionaries for
the low- and high-resolution image patches, we can enforce the
similarity of sparse representations between the low-resolution
and high-resolution image patch pair with respect to their own dic-
tionaries. Therefore, the sparse representation of a low-resolution
image patch can be applied with the high-resolution image patch
dictionary to generate a high-resolution image patch. The learned
dictionary pair is a more compact representation of the patch
pairs, compared to previous approaches, which simply sample a
large amount of image patch pairs [1], reducing the computational
cost substantially. The effectiveness of such a sparsity prior is
demonstrated for both general image super-resolution (SR) and
the special case of face hallucination. In both cases, our algorithm
generates high-resolution images that are competitive or even su-
perior in quality to images produced by other similar SR methods.
In addition, the local sparse modeling of our approach is naturally
robust to noise, and therefore the proposed algorithm can handle
SR with noisy inputs in a more unified framework.

Index Terms—Face hallucination, image super-resolution (SR),
nonnegative matrix factorization, sparse coding, sparse represen-
tation.

I. INTRODUCTION

S UPER-RESOLUTION (SR) image reconstruction is cur-
rently a very active area of research, as it offers the promise

of overcoming some of the inherent resolution limitations of
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low-cost imaging sensors (e.g., cell phone or surveillance cam-
eras) allowing better utilization of the growing capability of
high-resolution displays (e.g., high-definition LCDs). Such res-
olution-enhancing technology may also prove to be essential in
medical imaging and satellite imaging where diagnosis or anal-
ysis from low-quality images can be extremely difficult. Con-
ventional approaches to generating a SR image normally re-
quire as input multiple low-resolution images of the same scene,
which are aligned with subpixel accuracy. The SR task is cast
as the inverse problem of recovering the original high-resolu-
tion image by fusing the low-resolution images, based upon rea-
sonable assumptions or prior knowledge about the observation
model that maps the high-resolution image to the low-resolution
ones. The fundamental reconstruction constraint for SR is that
the recovered image, after applying the same generation model,
should reproduce the observed low-resolution images. How-
ever, SR image reconstruction is generally a severely ill-posed
problem because of the insufficient number of low-resolution
images, ill-conditioned registration and unknown blurring op-
erators, and the solution from the reconstruction constraint is
not unique. Various regularization methods have been proposed
to further stabilize the inversion of this ill-posed problem, such
as [2]–[4].

However, the performance of these reconstruction-based SR
algorithms degrades rapidly when the desired magnification
factor is large or the number of available input images is small.
In these cases, the result may be overly smooth, lacking impor-
tant high-frequency details [5]. Another class of SR approach
is based upon interpolation [6]–[8]. While simple interpolation
methods such as Bilinear or Bicubic interpolation tend to gen-
erate overly smooth images with ringing and jagged artifacts,
interpolation by exploiting the natural image priors will gener-
ally produce more favorable results. Dai et al. [7] represented
the local image patches using the background/foreground
descriptors and reconstructed the sharp discontinuity between
the two. Sun et al. [8] explored the gradient profile prior for
local image structures and applied it to SR. Such approaches
are effective in preserving the edges in the zoomed image.
However, they are limited in modeling the visual complexity of
the real images. For natural images with fine textures or smooth
shading, these approaches tend to produce watercolor-like
artifacts.

A third category of SR approach is based upon machine
learning techniques, which attempt to capture the cooccur-
rence prior between low-resolution and high-resolution image
patches. [9] proposed an example-based learning strategy
that applies to generic images where the low-resolution to
high-resolution prediction is learned via a Markov random field
(MRF) solved by belief propagation. [10] extends this approach
by using the Primal Sketch priors to enhance blurred edges,
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ridges and corners. Nevertheless, the previously mentioned
methods typically require enormous databases of millions of
high-resolution and low-resolution patch pairs, and are there-
fore computationally intensive. [11] adopts the philosophy of
locally linear embedding (LLE) [12] from manifold learning,
assuming similarity between the two manifolds in the high-res-
olution and the low-resolution patch spaces. Their algorithm
maps the local geometry of the low-resolution patch space to
the high-resolution one, generating high-resolution patch as a
linear combination of neighbors. Using this strategy, more patch
patterns can be represented using a smaller training database.
However, using a fixed number K neighbors for reconstruction
often results in blurring effects, due to over- or under-fitting.
In our previous work [1], we proposed a method for adaptively
choosing the most relevant reconstruction neighbors based
upon sparse coding, avoiding over- or under-fitting of [11] and
producing superior results. However, sparse coding over a large
sampled image patch database directly is too time-consuming.

While the previously mentioned approaches were proposed
for generic image SR, specific image priors can be incorporated
when tailored to SR applications for specific domains such as
human faces. This face hallucination problem was addressed in
the pioneering work of Baker and Kanade [13]. However, the
gradient pyramid-based prediction introduced in [13] does not
directly model the face prior, and the pixels are predicted in-
dividually, causing discontinuities and artifacts. Liu et al. [14]
proposed a two-step statistical approach integrating the global
PCA model and a local patch model. Although the algorithm
yields good results, the holistic PCA model tends to yield re-
sults like the mean face and the probabilistic local patch model
is complicated and computationally demanding. Wei Liu et al.
[15] proposed a new approach based upon TensorPatches and
residue compensation. While this algorithm adds more details
to the face, it also introduces more artifacts.

This paper focuses on the problem of recovering the SR ver-
sion of a given low-resolution image. Similar to the aforemen-
tioned learning-based methods, we will rely on patches from
the input image. However, instead of working directly with the
image patch pairs sampled from high- and low-resolution im-
ages [1], we learn a compact representation for these patch pairs
to capture the cooccurrence prior, significantly improving the
speed of the algorithm. Our approach is motivated by recent
results in sparse signal representation, which suggest that the
linear relationships among high-resolution signals can be accu-
rately recovered from their low-dimensional projections [16],
[17]. Although the SR problem is very ill-posed, making pre-
cise recovery impossible, the image patch sparse representation
demonstrates both effectiveness and robustness in regularizing
the inverse problem.

a) Basic Ideas: To be more precise, let be an
overcomplete dictionary of atoms , and suppose a
signal can be represented as a sparse linear combination
with respect to . That is, the signal can be written as

where where is a vector with very few
nonzero entries. In practice, we might only observe a small set
of measurements of

(1)

Fig. 1. Reconstruction of a raccoon face with magnification factor 2. Left: re-
sult by our method; right: the original image. There is little noticeable difference
visually even for such a complicated texture. The RMSE for the reconstructed
image is 5.92 (only the local patch model is employed).

where with is a projection matrix. In our
SR context, is a high-resolution image (patch), while is
its low-resolution counter part (or features extracted from it).
If the dictionary is overcomplete, the equation
is underdetermined for the unknown coefficients . The equa-
tion is even more dramatically underdetermined.
Nevertheless, under mild conditions, the sparsest solution
to this equation will be unique. Furthermore, if satisfies an
appropriate near-isometry condition, then for a wide variety of
matrices , any sufficiently sparse linear representation of a
high-resolution image patch in terms of the can be re-
covered (almost) perfectly from the low-resolution image patch
[17], [18].1 Fig. 1 shows an example that demonstrates the ca-
pabilities of our method derived from this principle. The image
of the raccoon face is blurred and downsampled to half of its
original size in both dimensions. Then we zoom the low-resolu-
tion image to the original size using the proposed method. Even
for such a complicated texture, sparse representation recovers a
visually appealing reconstruction of the original signal.

Recently sparse representation has been successfully applied
to many other related inverse problems in image processing,
such as denoising [19] and restoration [20], often improving
on the state-of-the-art. For example in [19], the authors use the
K-SVD algorithm [21] to learn an overcomplete dictionary from
natural image patches and successfully apply it to the image de-
noising problem. In our setting, we do not directly compute the
sparse representation of the high-resolution patch. Instead, we
will work with two coupled dictionaries, for high-resolution
patches, and for low-resolution ones. The sparse representa-
tion of a low-resolution patch in terms of will be directly
used to recover the corresponding high-resolution patch from

. We obtain a locally consistent solution by allowing patches
to overlap and demanding that the reconstructed high-resolu-
tion patches agree on the overlapped areas. In this paper, we
try to learn the two overcomplete dictionaries in a probabilistic
model similar to [22]. To enforce that the image patch pairs
have the same sparse representations with respect to and

, we learn the two dictionaries simultaneously by concate-
nating them with proper normalization. The learned compact
dictionaries will be applied to both generic image SR and face
hallucination to demonstrate their effectiveness.

1Even though the structured projection matrix defined by blurring and down-
sampling in our SR context does not guarantee exact recovery of ��� , empirical
experiments indeed demonstrate the effectiveness of such a sparse prior for our
SR tasks.
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Compared with the aforementioned learning-based methods,
our algorithm requires only two compact learned dictionaries,
instead of a large training patch database. The computation,
mainly based upon linear programming or convex optimization,
is much more efficient and scalable, compared with [9]–[11].
The online recovery of the sparse representation uses the
low-resolution dictionary only—the high-resolution dictio-
nary is used to calculate the final high-resolution image. The
computed sparse representation adaptively selects the most
relevant patch bases in the dictionary to best represent each
patch of the given low-resolution image. This leads to superior
performance, both qualitatively and quantitatively, compared
to the method described in [11], which uses a fixed number
of nearest neighbors, generating sharper edges and clearer
textures. In addition, the sparse representation is robust to noise
as suggested in [19] and, thus, our algorithm is more robust
to noise in the test image, while most other methods cannot
perform denoising and SR simultaneously.

b) Organization of the Paper: The remainder of this
paper is organized as follows. Section II details our formulation
and solution to the image SR problem based upon sparse
representation. Specifically, we study how to apply sparse rep-
resentation for both generic image SR and face hallucination. In
Section III, we discuss how to learn the two dictionaries for the
high- and low-resolution image patches, respectively. Various
experimental results in Section IV demonstrate the efficacy of
sparsity as a prior for regularizing image SR.

c) Notations: and denote the high- and low-reso-
lution images, respectively, and and denote the high- and
low-resolution image patches, respectively. We use bold up-
percase to denote the dictionary for sparse coding, specifi-
cally we use and to denote the dictionaries for high- and
low-resolution image patches, respectively. Bold lowercase let-
ters denote vectors. Plain uppercase letters denote regular ma-
trices, i.e., is used as a downsampling operation in matrix
form. Plain lowercase letters are used as scalars.

II. IMAGE SR FROM SPARSITY

The single-image SR problem asks: given a low-resolution
image , recover a higher resolution image of the same
scene. Two constraints are modeled in this work to solve this
ill-posed problem: 1) reconstruction constraint, which requires
that the recovered should be consistent with the input with
respect to the image observation model and 2) sparsity prior,
which assumes that the high-resolution patches can be sparsely
represented in an appropriately chosen overcomplete dictionary,
and that their sparse representations can be recovered from the
low-resolution observation.

1) Reconstruction constraint: The observed low-resolution
image is a blurred and downsampled version of the high-res-
olution image

(2)

Here, represents a blurring filter, and the downsampling
operator.

SR remains extremely ill-posed, since for a given low-resolu-
tion input , infinitely many high-resolution images satisfy

the previously reconstruction constraint. We further regularize
the problem via the following prior on small patches of :

2) Sparsity prior: The patches of the high-resolution image
can be represented as a sparse linear combination in a dic-

tionary trained from high-resolution patches sampled from
training images

for some with (3)

The sparse representation will be recovered by representing
patches of the input image , with respect to a low-resolu-
tion dictionary cotrained with . The dictionary training
process will be discussed in Section III.

We apply our approach to both generic images and face im-
ages. For generic image SR, we divide the problem into two
steps. First, as suggested by the sparsity prior (3), we find the
sparse representation for each local patch, respecting spatial
compatibility between neighbors. Next, using the result from
this local sparse representation, we further regularize and refine
the entire image using the reconstruction constraint (2). In this
strategy, a local model from the sparsity prior is used to recover
lost high-frequency for local details. The global model from the
reconstruction constraint is then applied to remove possible arti-
facts from the first step and make the image more consistent and
natural. The face images differ from the generic images in that
the face images have more regular structure and, thus, recon-
struction constraints in the face subspace can be more effective.
For face image SR, we reverse the previously mentioned two
steps to make better use of the global face structure as a regu-
larizer. We first find a suitable subspace for human faces, and
apply the reconstruction constraints to recover a medium reso-
lution image. We then recover the local details using the sparsity
prior for image patches.

The remainder of this section is organized as follows: in
Section II-A, we discuss SR for generic images. We will
introduce the local model based upon sparse representation
and global model based upon reconstruction constraints. In
Section II-B, we discuss how to introduce the global face
structure into this framework to achieve more accurate and
visually appealing SR for face images.

A. Generic Image SR From Sparsity

1) Local Model From Sparse Representation: Similar to the
patch-based methods mentioned previously, our algorithm tries
to infer the high-resolution image patch for each low-resolu-
tion image patch from the input. For this local model, we have
two dictionaries and , which are trained to have the same
sparse representations for each high-resolution and low-resolu-
tion image patch pair. We subtract the mean pixel value for each
patch, so that the dictionary represents image textures rather
than absolute intensities. In the recovery process, the mean value
for each high-resolution image patch is then predicted by its
low-resolution version.

For each input low-resolution patch , we find a sparse repre-
sentation with respect to . The corresponding high-resolution
patch bases will be combined according to these coefficients
to generate the output high-resolution patch . The problem of
finding the sparsest representation of can be formulated as

(4)
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where is a (linear) feature extraction operator. The main role
of in (4) is to provide a perceptually meaningful constraint2

on how closely the coefficients must approximate . We will
discuss the choice of in Section III.

Although the optimization problem (4) is NP-hard in general,
recent results [23], [24] suggest that as long as the desired coeffi-
cients are sufficiently sparse, they can be efficiently recovered
by instead minimizing the -norm,3 as follows:

(5)

Lagrange multipliers offer an equivalent formulation

(6)

where the parameter balances sparsity of the solution and fi-
delity of the approximation to . Notice that this is essentially
a linear regression regularized with -norm on the coefficients,
known in statistical literature as the Lasso [27].

Solving (6) individually for each local patch does not guar-
antee the compatibility between adjacent patches. We enforce
compatibility between adjacent patches using a one-pass al-
gorithm similar to that of [28].4 The patches are processed
in raster-scan order in the image, from left to right and top
to bottom. We modify (5) so that the SR reconstruction
of patch is constrained to closely agree with the previously
computed adjacent high-resolution patches. The resulting
optimization problem is

(7)

where the matrix extracts the region of overlap between the
current target patch and previously reconstructed high-resolu-
tion image, and contains the values of the previously recon-
structed high-resolution image on the overlap. The constrained
optimization (7) can be similarly reformulated as

(8)

where and . The parameter con-

trols the tradeoff between matching the low-resolution input and
finding a high-resolution patch that is compatible with its neigh-
bors. In all our experiments, we simply set . Given the
optimal solution to (8), the high-resolution patch can be re-
constructed as .

2Traditionally, one would seek the sparsest ��� s.t. ���� ���� ���� � �. For SR,
it is more appropriate to replace this 2-norm with a quadratic norm � � �
that penalizes visually salient high-frequency errors.

3There are also some recent works showing certain nonconvex optimization
problems can produce superior sparse solutions to the � convex problem, e.g.,
[25] and [26].

4There are different ways to enforce compatibility. In [11], the values in the
overlapped regions are simply averaged, which will result in blurring effects.
The greedy one-pass algorithm [28] is shown to work almost as well as the use
of a full MRF model [9]. Our algorithm, not based upon the MRF model, is es-
sentially the same by trusting partially the previously recovered high-resolution
image patches in the overlapped regions.

2) Enforcing Global Reconstruction Constraint: Notice that
(5) and (7) do not demand exact equality between the low-reso-
lution patch and its reconstruction . Because of this, and
also because of noise, the high-resolution image produced
by the sparse representation approach of the previous section
may not satisfy the reconstruction constraint (2) exactly. We
eliminate this discrepancy by projecting onto the solution
space of , computing

(9)

The solution to this optimization problem can be efficiently
computed using gradient descent. The update equation for this
iterative method is

(10)

where is the estimate of the high-resolution image after the
th iteration, is the step size of the gradient descent.

We take result from the previously mentioned optimiza-
tion as our final estimate of the high-resolution image. This
image is as close as possible to the initial SR given by spar-
sity, while respecting the reconstruction constraint. The entire
SR process is summarized as Algorithm 1.

Algorithm 1 (SR via Sparse Representation).

1: Input: training dictionaries and , a
low-resolution image .

2: For each 3 3 patch of , taken starting from the
upper-left corner with 1 pixel overlap in each direction,
• Compute the mean pixel value of patch .
• Solve the optimization problem with and

defined in (8): .
• Generate the high-resolution patch . Put

the patch into a high-resolution image .
3: End
4: Using gradient descent, find the closest image to

which satisfies the reconstruction constraint

5: Output: SR image .

3) Global Optimization Interpretation: The simple SR algo-
rithm outlined in the previous two subsections can be viewed
as a special case of a more general sparse representation frame-
work for inverse problems in image processing. Related ideas
have been profitably applied in image compression, denoising
[19], and restoration [20]. In addition to placing our work in a
larger context, these connections suggest means of further im-
proving the performance, at the cost of increased computational
complexity.

Given sufficient computational resources, one could in prin-
ciple solve for the coefficients associated with all patches simul-
taneously. Moreover, the entire high-resolution image itself
can be treated as a variable. Rather than demanding that be
perfectly reproduced by the sparse coefficients , we can pe-
nalize the difference between and the high-resolution image
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given by these coefficients, allowing solutions that are not per-
fectly sparse, but better satisfy the reconstruction constraints.
This leads to a large optimization problem

(11)

Here, denotes the representation coefficients for the th
patch of , and is a projection matrix that selects the th
patch from . is a penalty function that encodes addi-
tional prior knowledge about the high-resolution image. This
function may depend upon the image category, or may take the
form of a generic regularization term (e.g., Huber MRF, Total
Variation, Bilateral Total Variation).

Algorithm 1 can be interpreted as a computationally efficient
approximation to (11). The sparse representation step recovers
the coefficients by approximately minimizing the sum of
the second and third terms of (11). The sparsity term
is relaxed to , while the high-resolution fidelity term

is approximated by its low-resolution
version .

Notice, that if the sparse coefficients are fixed, the third
term of (11) essentially penalizes the difference between the
SR image and the reconstruction given by the coefficients:

. Hence, for small , the
back-projection step of Algorithm 1 approximately minimizes
the sum of the first and third terms of (11).

Algorithm 1 does not, however, incorporate any prior besides
sparsity of the representation coefficients—the term is ab-
sent in our approximation. In Section IV, we will see that spar-
sity in a relevant dictionary is a strong enough prior that we
can already achieve good SR performance. Nevertheless, in set-
tings where further assumptions on the high-resolution signal
are available, these priors can be incorperated into the global
reconstruction step of our algorithm.

B. Face SR From Sparsity

Face image resolution enhancement is usually desirable in
many surveillance scenarios, where there is always a large dis-
tance between the camera and the objects (people) of interest.
Unlike the generic image SR discussed earlier, face images are
more regular in structure and, thus, should be easier to handle.
Indeed, for face SR, we can deal with lower resolution input
images. The basic idea is first to use the face prior to zoom the
input to a reasonable medium resolution, and then to employ the
local sparsity prior model to recover details. To be precise, the
solution is also approached in two steps: 1) global model: use
reconstruction constraint to recover a medium high-resolution
face image, but the solution is searched only in the face sub-
space; and 2) local model: use the local sparse model to recover
the image details.

a) Nonnegative Matrix Factorization (NMF): In face
SR, the most frequently used subspace method for modeling
the human face is principal component analysis (PCA), which
chooses a low-dimensional subspace that captures as much

of the variance as possible. However, the PCA bases are
holistic, and tend to generate smooth faces similar to the mean.
Moreover, because principal component representations allow
negative coefficients, the PCA reconstruction is often hard to
interpret.

Even though faces are objects with lots of variance, they are
made up of several relatively independent parts such as eyes,
eyebrows, noses, mouths, checks and chins. NMF [29] seeks a
representation of the given signals as an additive combination
of local features. To find such a part-based subspace, NMF is
formulated as the following optimization problem:

(12)

where is the data matrix, is the basis
matrix and is the coefficient matrix. In our context
here, simply consists of a set of prealigned high-resolution
training face images as its column vectors. The number of the
bases can be chosen as which is smaller than
and , meaning a more compact representation. It can be shown
that a locally optimum of (12) can be obtained via the following
update rules:

(13)

where and . The obtained
basis matrix is often sparse and localized.

b) Two Step Face SR: Let and denote the high-resolu-
tion and low-resolution faces, respectively. is obtained from

by smoothing and downsampling as in (2). We want to re-
cover from the observation . In this paper, we assume has
been prealigned to the training database by either manually la-
beling the feature points or with some automatic face alignment
algorithm such as the method used in [14]. We can achieve the
optimal solution for based upon the maximum a posteriori
(MAP) criteria

(14)

models the image observation process, usually
with Gaussian noise assumption on the observation

with
being a normalization factor. is a prior on the underlying
high-resolution image , typically in the exponential form

. Using the rules in (13), we can obtain
the basis matrix , which is composed of sparse bases. Let
denote the face subspace spanned by . Then in the subspace

, the SR problem in (14) can be formulated using the recon-
struction constraints as

(15)

where is a prior term regularizing the high-resolution so-
lution, is the coefficient vector in the subspace for
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estimated the high-resolution face, and is a parameter used to
balance the reconstruction fidelity and the penalty of the prior
term. In this paper, we simply use a generic image prior re-
quiring that the solution be smooth. Let denote a matrix per-
forming high-pass filtering. The final formulation for (15) is

(16)

The medium high-resolution image is approximated by .
The prior term in (16) suppresses the high frequency compo-
nents, resulting in over-smoothness in the solution image. We
rectify this using the local patch model based upon sparse rep-
resentation mentioned earlier in Section II-A-1. The complete
framework of our algorithm is summarized as Algorithm 2.

Algorithm 2 (Face Hallucination via Sparse Representation)

1: Input: sparse basis matrix , training dictionaries
and , a low-resolution aligned face image .

2: Find a smooth high-resolution face from the
subspace spanned by through:
• Solve the optimization problem in (16)

• .
3: For each patch of , taken starting from the

upper-left corner with 1 pixel overlap in each direction,
• Compute and record the mean pixel value of as .
• Solve the optimization problem with and

defined in (8): .
• Generate the high-resolution patch .

Put the patch into a high-resolution image .
4: Output: SR face .

III. LEARNING THE DICTIONARY PAIR

In the previous section, we discussed regularizing the SR
problem using sparse prior which states that each pair of high-
and low-resolution image patches have the same sparse repre-
sentations with respect to the two dictionaries and . A
straightforward way to obtain two such dictionaries is to sample
image patch pairs directly, which preserves the correspondence
between the high-resolution and low-resolution patch items
[1]. However, such a strategy will result in large dictionaries
and, hence, expensive computation. This section will focus on
learning a more compact dictionary pair for speeding up the
computation.

A. Single Dictionary Training

Sparse coding is the problem of finding sparse representa-
tions of the signals with respect to an overcomplete dictionary

. The dictionary is usually learned from a set of training ex-
amples . Generally, it is hard to learn a
compact dictionary which guarantees that sparse representation
of (4) can be recovered from minimization in (5). Fortunately,
many sparse coding algorithms proposed previously suffice for
practical applications. In this work, we focus on the following
formulation:

Fig. 2. high-resolution image patch dictionary trained by (24) using 100 000
high-resolution and low-resolution image patch pairs sampled from the generic
training images. Totally 512 dictionary atoms are learned with each atom of size
9� 9.

(17)

where the norm is to enforce sparsity, and the norm
constraints on the columns of remove the scaling ambiguity.5

This particular formulation has been studied extensively [30],
[22], [31]. Equation (17) is not convex in both and , but is
convex in one of them with the other fixed. The optimization
performs in an alternative manner over and :

1) Initialize with a Gaussian random matrix, with each
column unit normalized.

2) Fix , update by

(18)

which can be solved efficiently through linear program-
ming.

3) Fix , update by

(19)

which is a Quadratically Constrained Quadratic Program-
ming that is ready to be solved in many optimization pack-
ages.

4) Iterate between 2) and 3) until converge. In our implemen-
tation, we used a Matlab package developed in [22].

B. Joint Dictionary Training

Given the sampled training image patch pairs ,
where are the set of sampled high-res-
olution image patches and are the cor-
responding low-resolution image patches (or features), our goal
is to learn dictionaries for high-resolution and low-resolution
image patches, so that the sparse representation of the high-res-
olution patch is the same as the sparse representation of the cor-
responding low-resolution patch. This is a difficult problem, due

5Note that without the norm constraints the cost can always be reduced by
dividing � by � � � and multiplying ��� by � � �.
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Fig. 3. Results of the flower image magnified by a factor of 3 and the corresponding RMSEs. Left to right: input, bicubic interpolation (RMSE: 4.066), NE [11]
(RMSE: 4.888), our method (RMSE: 3.761), and the original.

Fig. 4. Results of the girl image magnified by a factor of 3 and the corresponding RMSEs. Left to right: input, bicubic interpolation (RMSE: 6.843), NE [11]
(RMSE: 7.740), our method (RMSE: 6.525), and the original.

Fig. 5. Results on an image of the Parthenon with magnification factor 3 and corresponding RMSEs. Top row: low-resolution input, bicubic interpolation (RMSE:
12.724), BP (RMSE: 12.131). Bottom row: NE (RMSE: 13.556), SE [7] (RMSE: 12.228), and our method (RMSE: 11.87).

Fig. 6. Example training faces for the face SR algorithm. The training images
cover faces of both genders, different ages, different races, and various facial
expressions.

to the ill-posed nature of SR. The individual sparse coding prob-
lems in the high-resolution and low-resolution patch spaces are

(20)

and

(21)

respectively. We combine these objectives, forcing the high-res-
olution and low-resolution representations to share the same
codes, instead writing

(22)

where and are the dimensions of the high-resolution and
low-resolution image patches in vector form. Here, and

balance the two cost terms of (20) and (21). (22) can be
rewritten as

(23)
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TABLE I
RMSES OF THE RECONSTRUCTED IMAGES USING DICTIONARIES OF DIFFERENT SIZES, AND USING THE RAW IMAGE PATCHES DIRECTLY FROM WHICH THE

DICTIONARIES ARE TRAINED

Fig. 7. Comparison between the two-step face SR algorithm with the generic
image SR algorithm applied to low-resolution face images. From left to right:
input image, SR result using the two step approach, and SR result using the
generic approach. The two-step face SR algorithm generates visually much
better results.

Fig. 8. Results of our algorithm compared to other methods and the corre-
sponding average RMSEs. From left to right columns: (a) low-resolution input;
(b) bicubic interpolation (RMSE: 8.024); (c) back projection (RMSE: 7.474);
(d) global NMF modeling followed by bilateral filtering (RMSE: 10.738);
(e) global NMF modeling and sparse representation (RMSE: �����); and (f)
original.

or equivalently

(24)

where

(25)

Thus, we can use the same learning strategy in the single dictio-
nary case for training the two dictionaries for our SR purpose.
Note that since we are using features from the low-resolution
image patches, and are not simply connected by a linear
transform, otherwise the training process of (24) will depend
upon the high-resolution image patches only (for detail, refer to

Section III-C). Fig. 2 shows the dictionary learned by (24) for
generic images.6 The learned dictionary demonstrates basic pat-
terns of the image patches, such as orientated edges, instead of
raw patch prototypes, due to its compactness.

C. Feature Representation for low-resolution Image Patches

In (4), we use a feature transformation to ensure that the
computed coefficients fit the most relevant part of the low-res-
olution signal and, hence, have a more accurate prediction for
the high-resolution image patch reconstruction. Typically, is
chosen as some kind of high-pass filter. This is reasonable from
a perceptual viewpoint, since people are more sensitive to the
high-frequency content of the image. The high-frequency com-
ponents of the low-resolution image are also arguably the most
important for predicting the lost high-frequency content in the
target high-resolution image.

In the literature, people have suggested extracting different
features for the low-resolution image patch in order to boost the
prediction accuracy. Freeman et al. [9] used a high-pass filter
to extract the edge information from the low-resolution input
patches as the feature. Sun et al. [10] used a set of Gaussian
derivative filters to extract the contours in the low-resolution
patches. Chang et al. [11] used the first- and second-order gra-
dients of the patches as the representation. In this paper, we also
use the first- and second-order derivatives as the feature for the
low-resolution patch due to their simplicity and effectiveness.
The four 1-D filters used to extract the derivatives are

(26)

where the superscript “ ” means transpose. Applying these four
filters yields four feature vectors for each patch, which are con-
catenated into one vector as the final representation of the low-
resolution patch. In our implementation, the four filters are not
applied directly to the sampled low-resolution image patches;
instead, we apply the four filters to the training images. Thus,
for each low-resolution training image, we get four gradient
maps, and we extract fours patches from these gradient maps
at each location, and concatenate them to become the feature
vector. Therefore, the feature representation for each low-res-
olution image patch also encodes its neighboring information,
which is beneficial for promoting compatibility among adjacent
patches in the final SR image.

In practice, we find that it works better to extract the features
from the upsampled version of the low-resolution image instead
of the original one. That is, we first upsample the low-resolution

6We omit the dictionary for the low-resolution image patches because we are
training on features instead the patches themselves.
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Fig. 9. Effects of dictionary size on the SR reconstruction of Lena. From left to right: dictionary size 256, 512, 1024, 2048, and the whole sampled patch set,
respectively.

Fig. 10. Computation time on “Girl” image with dictionaries of different sizes
(in seconds).

image by factor of two7 using Bicubic interpolation, and then
extract gradient features from it. Since we know all the zoom
ratios, it is easy to track the correspondence between high-res-
olution image patches and the upsampled low-resolution image
patches both for training and testing. Because of the way of
extracting features from the low-resolution image patches, the
two dictionaries and are not simply linearly connected,
making the joint learning process in (24) more reasonable.

IV. EXPERIMENTAL RESULTS

In this section, we first demonstrate the SR results obtained
by applying the previously mentioned methods on both generic
and face images. We then move on to discuss various influen-
tial factors for the proposed algorithm including dictionary size,
noise with inputs, and the global reconstruction constraints.

In our experiments, we magnify the input low-resolution
image by a factor of 3 for generic images and 4 for face images,
which is commonplace in the literature of single frame SR. In
generic image SR, for the low-resolution images, we always
use 3 3 low-resolution patches (upsampled to 6 6), with
overlap of 1 pixel between adjacent patches, corresponding to
9 9 patches with overlap of 3 pixels for the high-resolution
patches. In face SR, we choose the patch size as 5 5 pixels for
both low- and high-resolution face images. For color images,
we apply our algorithm to the illuminance channel only, since

7We choose two mainly for dimension considerations. For example, if we
work on 3-by-3 patches in the low-resolution image, by upsampling the image
by ratio of 2, the final feature for the 9 dimensional low-resolution patch will be
� � � � � � ���.

humans are more sensitive to illuminance changes. We there-
fore interpolate the color layers (Cb, Cr) using plain Bicubic
interpolation. We evaluate the results of various methods both
visually and qualitatively in Root Mean Square Error (RMSE).
Even though RMSE is a common criterion in image processing
for recovery, it is not quite reliable for rating visual image
quality [32], as we will see in the following parts. Note that
since we only work on illuminance channel, the RMSE reported
is carried out only on the illuminance channel.

A. Single Image SR

1) Generic Image SR: We apply our methods to generic
images such as flowers, human faces and architectures. The
two dictionaries for high-resolution and low-resolution image
patches are trained from 100 000 patch pairs randomly sampled
from natural images collected from the internet. We preprocess
these images by cropping out the textured regions and discard
the smooth parts.8 Unless otherwise explicitly stated, we always
fix the dictionary size as 1024 in all our experiments, which is a
balance between computation and image quality (Section IV-B
will examine the effects of different dictionary sizes). In the SR
algorithm (8), the choice of depends upon the level of noise in
the input image, which we will discuss further in Section IV-C.
For generic low-noise images, we always set in all our
experiments, which generally yields satisfactory results.

Figs. 3 and 4 compare the outputs of our method with those
of the neighborhood embedding (NE) [11]. The NE method is
similar to ours in the sense that both methods use the linear com-
bination weights derived from the low-resolution image patch
to generate the underlying high-resolution image patch. Unlike
our method, the NE method uses fixed nearest neighbors to
find the reconstruction supports directly from sampled training
patches and does not including a dictionary training phase. To
make a fair comparison, we use the same 100 000 patch pairs
for the NE method and try different to get the most visually
appealing results. Using a compact dictionary pair, our method
is much faster and yet generates shaper results. As the recon-
structed images show in Figs. 3 and 4, there are noticeable dif-
ferences in the texture of the leaves: the fuzz on the leaf stalk,
and also the freckles on the face of the girl. In the captions of
both figures, we list the RMSEs in parentheses following each

8Other authors prepare the training patches by extracting the image edges and
sample patches around the edge regions to get the patch primitives.
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method. As seen, our method can achieve lower RMSE than
both Bicubic interpolation and NE. An interesting observation
is that, although NE generates visually more appealing images
than Bicubic, its RMSE is actually higher than Bicubic, indi-
cating that RMSE is not a reliable criterion for visual image
quality.

In Fig. 5, we compare our method with several more state-of-
the-art methods on an image of the Parthenon used in [7], in-
cluding back projection (BP) [33], NE [11], and the recently
proposed method based upon a learned soft edge prior (SE)
[7]. The result from back projection has many jagged effects
along the edges. NE generates sharp edges in places, but blurs
the texture on the temple’s facade. The SE method gives a de-
cent reconstruction, but introduces undesired smoothing that is
not present in our result. We also give the RMSEs for all the
methods in the followed parentheses in the caption. Again, be-
sides best visual quality, our method achieves the lowest RMSE
among these methods as well.

2) Face SR: In this part, we evaluate our proposed SR al-
gorithm on frontal views of human faces. The experiments are
conducted on the face database FRGC Ver 1.0 [34]. All these
high-resolution face images were aligned by an automatic align-
ment algorithm using the eye positions, and then cropped to the
size of 100 100 pixels. To obtain the face subspace spanned
by , we select 540 face images as training, covering both gen-
ders, different races, varying ages and different facial expres-
sions (Fig. 6). These high-resolution face images are blurred
and downsampled to 25 25 pixels to form the low-resolution
counterparts. To prepare the coupled dictionaries needed for our
sparse representation algorithm, we also sample 100 000 patch
pairs from the training images and learn the dictionaries of size
1024. 30 new face images (from people not in the training set)
are chosen as our test cases, which are blurred and downsampled
to the size of 25 25 pixels in the same procedure as preparing
the training set. These low-resolution input faces are aligned by
manually labeling the eyeball positions.

As mentioned earlier, face image SR can handle more chal-
lenging tasks than generic image SR due to the regular face
structure. Indeed, it is not an easy job to zoom the 25 25 low-
resolution face image by 4 times using the method for generic
image SR. First, the downsampling process loses so much in-
formation that it is difficult to predict well a 12 12 high-reso-
lution patch given only a 3 3 image patch. Second, the reso-
lution of the face image is so low that the structures of the face
that are useful for SR inference (such as corners and edges) col-
lapses into only a couple of pixels. The two-step approach for
face SR, on the other hand, can compensate for the lost infor-
mation in the first step using the redundancy of the face struc-
tures by searching the solution in the face subspace respecting
the reconstruction constraints. The local model from sparse rep-
resentation then can be further employed to enhance the edges
and textures to achieve shaper results. In Fig. 7, we compare
the proposed two-step approach with the direct sparse represen-
tation method for generic images. Since the resolution of the
input face image is so low, a direct application of the generic
approach does not seem to generate satisfying results.

In our experiments with face images, we also set for
sparsity regularization. We compare our algorithm with Bicubic

interpolation [6] and BP [33]. The results are shown in Fig. 8,
which indicate that our method can generate much higher reso-
lution faces. Column 4 shows the intermediate results from the
NMF global modeling and column 5 demonstrates the results
after local sparse modeling. Comparing the two columns, the
local sparse modeling further enhances the edges and textures,
and also reduces RMSE.

From columns 4 and 5, we can also see that the local patch
method based upon sparse representation further enhances the
edges and textures.

B. Effects of Dictionary Size

The previously mentioned experimental results show that the
sparsity prior for image patches is very effective in regularizing
the otherwise ill-posed SR problem. In those results, we fix the
dictionary size to be 1024. Intuitively, larger dictionaries should
possess more expressive power (in the extreme, we can use the
sampled patches as the dictionary directly as in [1]) and, thus,
may yield more accurate approximation, while increasing the
computation cost. In this section, we evaluate the effect of dic-
tionary size on generic image SR. From the sampled 100 000
image patch pairs, we train four dictionaries of size 256, 512,
1024, and 2048, and apply them to the same input image. We
also use the 100 000 image patches directly as the dictionary for
comparison. The results are evaluated both visually and quanti-
tatively in RMSE.

Fig. 9 shows the reconstructed results for the Lena image
using dictionaries of different sizes. While there are not many
visual differences for the results using different dictionary sizes
from 256 to 2048 and the whole sampled patch set, we indeed
observe the reconstruction artifacts will gradually diminish with
larger dictionaries. The visual observation is also supported by
the RMSEs of the recovered images. In Table I, we list the
RMSEs of the reconstructed images for dictionaries of different
sizes. As shown in the table, using larger dictionaries will yield
smaller RMSEs, and all of them have smaller RMSEs than those
by Bicubic interpolation. However, the computation is approx-
imately linear to the size of the dictionary; larger dictionaries
will result in heavier computation. Fig. 10 shows the computa-
tion time in seconds with “Girl” as the test image. The algorithm
is written in Matlab without optimization for speed, and ran on a
laptop of Core duo @1.83G with 2G memory. To compare with
[1], the computation time is almost an hour, much slower than
our current solution with trained compact dictionaries. In prac-
tice, one chooses the appropriate dictionary size as a tradeoff
between reconstruction quality and computation. We find that
dictionary size 1024 can yield decent outputs, while allowing
fast computation.

C. Robustness to Noise

Most single input SR algorithms assume that the input im-
ages are clean and free of noise, an assumption which is likely
to be violated in real applications. To deal with noisy data, pre-
vious algorithms usually divide the recovery process into two
disjoint steps: first denoising and then SR. However, the results
of such a strategy depend upon the specific denoising technique,
and any artifacts during denoising on the low-resolution image
will be kept or even magnified in the latter SR process. Here
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Fig. 11. Effects of � on the recovered image given the input. From left to right, � � ����� ����� �������� ���. The larger � is, the smoother the result image gets.
Note that the results are generated from the local model only.

Fig. 12. Performance evaluation of our proposed algorithm on noisy data. Noise level (standard deviation of Gaussian noise) from left to right: 0, 4, 6 and 8. Top
row: input images; middle row: recovered images using NE [11] �� � ������	� 
�; bottom row: recovered images using our method �� � �������� ��
� ����.
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TABLE II
RMSES OF THE RECONSTRUCTED IMAGES FROM DIFFERENT LEVELS OF NOISY

INPUTS

TABLE III
GLOBAL CONSTRAINT IN THE SECOND STEP FURTHER REFINES THE RESULTS

FROM LOCAL SPARSE MODEL IN THE FIRST STEP AND REDUCES RMSES

we demonstrate that by formulating the problem into our sparse
representation model, our method is much more robust to noise
with input and, thus, can handle SR and denoising simultane-
ously. Note that in (6) the parameter depends upon the noise
level of the input data; the noisier the data, the larger the value of

should be. Fig. 11 shows how influences the reconstructed
results given the same noiseless input image. The larger , the
smoother the result image texture gets. This is obvious by for-
mulating (8) into MAP problem

(27)

where

(28)

where is the variance of the Laplacian prior on , and is the
variance of the noise assumed on the data . Taking the negative
log likelihood in (27), we get the exact optimization problem in
(8), with . Suppose the Laplacian variance is fixed,
the more noisy of the data ( is larger), the larger of the value

should be. On the other hand, given the input image, the larger
value of we set, the more noisy the model will assume of the
data and, thus, tends to generate smoother results.

To test the robustness of our algorithm to noise, we add
different levels of Gaussian noise to the low-resolution input
image. The standard deviation of the Gaussian noise ranges
from 4 to 10. The regularization parameter is empirically
set to be one tenth of the standard deviation. In Fig. 12, we
show the results of our algorithm applying to the Liberty statue
image with different levels of Gaussian noise. For comparison,
we also show the results of using Bicubic and NE [11]. As
expected, the results of Bicubic is both noisy and blurred. For
NE, the number of neighbors is chosen as decreasing as the
noise becomes heavier to get better results. As shown, the NE
method is good at preserving edges, but fails to distinguish
the signal from noise, and therefore generates unwanted noisy
results. Our algorithm is capable of performing denoising and
SR simultaneously more elegantly. Table II shows the RMSEs
of the reconstructed images from different levels of noisy data.

In terms of RMSE, our method outperforms both Bicubic
interpolation and NE in all cases.

D. Effects of Global Constraints

The global reconstruction constraint enforced by (9) is em-
ployed to refine the local image patch sparse model, ensuring
the recovered high-resolution image to be consistent with its
low-resolution observation. In our experiments, we observe that
the sparsity prior is very effective and contribute the most, while
the global constraint in the second step reduces RMSE by re-
moving some minor artifacts which are hardly seen from the
first step. Table III shows the RMSEs of the results from local
sparse model only and local model combined with the global
model. The RMSEs of Bicubic interpolation are again given as
references. As shown, the local sparse model can achieve better
RMSEs than Bicubic interpolation, and the global constraint
further reduces the RMSEs of the recovered images. These ex-
periments are carried out with dictionary size 1024.

V. CONCLUSION

This paper presented a novel approach toward single image
SR based upon sparse representations in terms of coupled dic-
tionaries jointly trained from high- and low-resolution image
patch pairs. The compatibilities among adjacent patches are en-
forced both locally and globally. Experimental results demon-
strate the effectiveness of the sparsity as a prior for patch-based
SR both for generic and face images. However, one of the most
important questions for future investigation is to determine the
optimal dictionary size for natural image patches in terms of SR
tasks. Tighter connections to the theory of compressed sensing
may yield conditions on the appropriate patch size, features to
utilize and also approaches for training the coupled dictionaries.
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