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OVERVIEW
Wavelet

A small wave
Wavelet Transforms

Convert a signal into a series of wavelets
Provide a way for analyzing waveforms, bounded in both 
frequency and duration
Allow signals to be stored more efficiently than by Fourier 
transform
Be able to better approximate real-world signals
Well-suited for approximating data with sharp discontinuities

“The Forest & the Trees”
Notice gross features with a large "window“
Notice small features with a small



Historical Development
Pre-1930

Joseph Fourier (1807) with his theories of frequency analysis
The 1930s

Using scale-varying basis functions; computing the energy of 
a function

1960-1980
Guido Weiss and Ronald R. Coifman; Grossman and Morlet

Post-1980
Stephane Mallat; Y. Meyer; Ingrid Daubechies; wavelet 
applications today



Mathematical Transformation
Why

To obtain a further information from the signal 
that is not readily available in the raw signal.

Raw Signal
Normally the time-domain signal

Processed Signal
A signal that has been "transformed" by any of 
the available mathematical transformations 

Fourier Transformation
The most popular transformation



FREQUENCY ANALYSIS
Frequency Spectrum

Be basically the frequency components (spectral 
components) of that signal
Show what frequencies exists in the signal

Fourier Transform (FT) 
One way to find the frequency content
Tells how much of each frequency exists in a 
signal
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STATIONARITY OF SIGNAL

Stationary Signal
Signals with frequency content unchanged 
in time
All frequency components exist at all times

Non-stationary Signal
Frequency changes in time
One example: the “Chirp Signal”



STATIONARITY OF SIGNAL
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CHIRP SIGNALS
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At what time the frequency components occur?  FT can not tell!At what time the frequency components occur?  FT can not tell!



NOTHING MORE, NOTHING 
LESS

FT Only Gives what Frequency Components Exist in 
the Signal
The Time and Frequency Information can not be 
Seen at the Same Time
Time-frequency Representation of the Signal is 
Needed

Most of Transportation Signals are Non-stationary. 
(We need to know whether and also when an incident was happened.)

ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT)



SFORT TIME FOURIER 
TRANSFORM (STFT)

Dennis Gabor (1946) Used STFT
To analyze only a small section of the signal at a time 
-- a technique called Windowing the Signal.

The Segment of Signal is Assumed Stationary 
A 3D transform
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DRAWBACKS OF STFT
Unchanged Window
Dilemma of Resolution

Narrow window -> poor frequency resolution 
Wide window -> poor time resolution

Heisenberg Uncertainty Principle
Cannot know what frequency exists at what time intervals

Via Narrow Window Via Wide Window



MULTIRESOLUTION 
ANALYSIS (MRA)

Wavelet Transform
An alternative approach to the short time Fourier transform 
to overcome the resolution problem 
Similar to STFT: signal is multiplied with a function

Multiresolution Analysis 
Analyze the signal at different frequencies with different 
resolutions
Good time resolution and poor frequency resolution at high 
frequencies
Good frequency resolution and poor time resolution at low 
frequencies
More suitable for short duration of higher frequency; and 
longer duration of lower frequency components



PRINCIPLES OF WAELET 
TRANSFORM

Split Up the Signal into a Bunch of 
Signals
Representing the Same Signal, but all 
Corresponding to Different Frequency 
Bands
Only Providing What Frequency Bands 
Exists at What Time Intervals



DEFINITION OF CONTINUOUS 
WAVELET TRANSFORM

Wavelet 
Small wave
Means the window function is of finite length

Mother Wavelet
A prototype for generating the other window functions
All the used windows are its dilated or compressed and 
shifted versions
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SCALE

Scale
S>1: dilate the signal
S<1: compress the signal

Low Frequency -> High Scale -> Non-detailed 
Global View of Signal -> Span Entire Signal
High Frequency -> Low Scale -> Detailed 
View  Last in Short Time
Only Limited Interval of Scales is Necessary



COMPUTATION OF CWT
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Step 1: The wavelet is placed at the beginning of the signal, and set s=1 (the most 
compressed wavelet);
Step 2: The wavelet function at scale “1” is multiplied by the signal, and integrated 
over all times; then multiplied by       ;
Step 3: Shift the wavelet to t=    , and get the transform value at t=    and s=1;
Step 4: Repeat the procedure until the wavelet reaches the end of the signal;
Step 5: Scale s is increased by a sufficiently small value, the above procedure is 
repeated for all s;
Step 6: Each computation for a given s fills the single row of the time-scale plane;
Step 7: CWT is obtained if all s are calculated.



RESOLUTION OF TIME & 
FREQUENCY

Time

Frequenc 
y

Better time 
resolution;
Poor 
frequency 
resolution

Better 
frequency 
resolution;
Poor time 
resolution • Each box represents a equal portion   

• Resolution in STFT is selected once for entire 
analysis



COMPARSION OF 
TRANSFORMATIONS

From http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10

http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf


DISCRETIZATION OF CWT
It is Necessary to Sample the Time-Frequency (scale) Plane.
At High Scale s (Lower Frequency f ), the Sampling Rate N can be 
Decreased.
The Scale Parameter s is Normally Discretized on a Logarithmic Grid.
The most Common Value is 2.
The Discretized CWT is not a True Discrete Transform

Discrete Wavelet Transform (DWT)
Provides sufficient information both for analysis and synthesis
Reduce the computation time sufficiently
Easier to implement
Analyze the signal at different frequency bands with different resolutions 
Decompose the signal into a coarse approximation and detail information



Multi Resolution Analysis
Analyzing  a signal both in time domain and 
frequency domain is needed many a times

But resolutions in both domains is limited by 
Heisenberg uncertainty principle 

Analysis (MRA) overcomes this , how?
Gives good time resolution and poor frequency 
resolution at high frequencies and good frequency 
resolution and poor time resolution at low 
frequencies
This helps as most natural signals have low 
frequency content spread over long duration and 
high frequency content for short durations



SUBBABD CODING 
ALGORITHM

Halves the Time Resolution
Only half number of samples resulted

Doubles the Frequency Resolution
The spanned frequency band halved
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RECONSTRUCTION
What

How those components can be assembled back 
into the original signal without loss of information? 
A Process After decomposition or analysis.
Also called synthesis

How
Reconstruct the signal from the wavelet 
coefficients 
Where wavelet analysis involves filtering and 
down sampling, the wavelet reconstruction 
process consists of up sampling and filtering



WAVELET APPLICATIONS
Typical Application Fields 

Astronomy, acoustics, nuclear engineering, sub-band coding, 
signal and image processing, neurophysiology, music, 
magnetic resonance imaging, speech discrimination, optics, 
fractals, turbulence, earthquake-prediction, radar, human 
vision, and pure mathematics applications

Sample Applications
Identifying pure frequencies
De-noising signals
Detecting discontinuities and breakdown points
Detecting self-similarity
Compressing images
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