Image Reconstruction from Projection

Reconstruct an image from a series of projections
X-ray computed tomography (CT)

“Computed tomography is a medical imaging method employing
tomography where digital geometry processing is used to generate a
three-dimensional image of the internals of an object from a large

series of two-dimensional X-ray images taken around a single axis of
rotation.”

http://en.wikipedia.org/wiki/Computed_tomography
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Backprojection

“ In computed tomography or other imaging techniques
requiring reconstruction from multiple projections, an
algorithm for calculating the contribution of each voxel of
the structure to the measured ray data, to generate an
Image; the oldest and simplest method of image
reconstruction. *

http://www.medilexicon.com/medicaldictionary.php?t=9165
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Image Reconstruction: Introduction
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FIGURE 5.32

(a) Flat region
showing a simple
object, an input
parallel beam, and

a detector strip.

(b) Result of back-
projecting the
sensed strip data
(i.e., the 1-D absorp-
tion profile). (c) The
beam and detectors
rotated by 90°.

(d) Back-projection.
(e) The sum of (b)
and (d). The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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Image Reconstruction: Introduction
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FIGURE 5.33

(a) Same as Fig.
5.32(a).

(b)—(e)
Reconstruction
using 1,2, 3,and 4
backprojections 45°
apart.

(f) Reconstruction
with 32 backprojec-
tions 5.625° apart
(note the blurring).
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FIGURE 5.34 (a) A region with two objects. (b)—(d) Reconstruction using 1, 2, and 4
backprojections 45° apart. (e) Reconstruction with 32 backprojections 5.625° apart.
112 ) Reconstruction with 64 backprojections 2.8125° apart. -~
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FIGURE 5.35 Four
generations of CT
scanners. The
dotted arrow
lines indicate
incremental
linear motion.
The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion
perpendicular to
the plane of the
paper. The
double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.
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Other CTs

Electron beam CT (Fifth-generation CT)

Electron beam tomography (EBCT) was introduced in the early 1980s, by
medical physicist Andrew Castagnini, as a method of improving the temporal
resolution of CT scanners.

High cost of EBCT equipment, and poor flexibility

Helical (or spiral) cone beam computed tomography (sixth-generation)

A type of three dimensional computed tomography (CT) in which the source
(usually of x-rays) describes a helical trajectory relative to the object while a
two dimensional array of detectors measures the transmitted radiation on part
of a cone of rays emitting from the source

http://en.wikipedia.org/wiki/Computed tomography
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Other CTs

Multislice CT (seventh-generation)

The major benefit of multi-slice CT

Significant increase in detail
Utilizes X-ray tubes more economically
Reducing cost and potentially reducing dosage
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Projections and the Radon Transform

xcosf + ysinf = p

FIGURE 5.36 Normal representation of a straight line.
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Projections and the Radon Transform

FIGURE 5.37
Geometry of a
parallel-ray beam. y

'

Complete projection, g(p. 8;).
for a fixed angle — /

/

y
f !
A pont g(pj, Ox) In
Y| Q the projection

9(0;,6,) = j_iji f(X,y)o(xcosg, +ysing, — p;)dxdy
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Projections and the Radon Transform

Radon transform gives the projection (line integral) of
f(x,y) along an arbitrary line in the xy-plane

R{f}=0(p,0)= [:Ji f (X,y)S(xcosé + ysin @ — p)dxdy

M-1N-1
R{fl=09(p 0)= f (x,y)o(xcos@+ ysind— p)

x=0 vy

Z

Il
o
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Example: Using the Radon transform to obtain
the projection of a circular region

Assume that the circle is centered on the origin of the xy-plane.
Because the object is circularly symmetric, its projections are the
same for all angles, so we just check the projection for @ =0’

A X°+y°<r’
0 otherwise

f(X,Y)={
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Example: Using the Radon transform to obtain
the projection of a circular region

g(p,0) = j“; ji f (X, y)S(xCos @+ ysin & — p)dxdy
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FIGURE 5.38 A disk
and a plot of its
Radon transform,
derived analytically.
Here we were able to
plot the transform
because it depends
only on one variable.
When g depends on
both p and 6, the
Radon transform
becomes an image
whose axes are p and
6, and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.
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Sinogram: The Result of Radon Transform
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FIGURE 5.39 Tiwo images and their sinograms (Radon transforms). Each row of a sinogram

3/11/2014 is a projection along the corresponding angle on the vertical axis. Image (c) is called the
Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is
shown enhanced here to facilitate viewing,.



Image Reconstruction

f,(X,y)=g(xcos@+ysinb,o)

fy) =] f,(xy)de

(% Y) = Ta(x,Y)

A back-projected image formed is referred to as a laminogram
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Examples: Laminogram

ab

FIGURE 5.40
Backprojections

of the sinograms
in Fig. 5.39.
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The Fourier-Slice Theorem

For a given value of 4, the 1-D Fourier transform
of a projection with respect to p Is

Gw.0)=[ _g(p.0)e*"dp

= joo f (X, y)S(xcosé + ysinf— p)e 1*"”d pdxdy

—00 o —00 o —

= _O:O f (X, y)“_ojo o(xcosf+ ysin Q—p)e‘jz”””dp}dxdy

\_ [ f(X y)e—j27m)(xcose+ysint9)dxdy
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The Fourier-Slice Theorem

GW,0)=[_g(p,0)e " dp

G(a), 9) _ .00 I_oo f (X, y)e_jzﬂa)(xcose+ysin€)dxdy

- _'[_O:O I_O:o f (X, y)e‘jz”(u”vy)dxdy}

=[F(u,v)]

= F(wcosd,wsin6)

u=wcosé,v=wsin@

u=wcosé,v=wsin@

Fourier-slice theorem: The Fourier tansform of a projection is a slice of
the 2-D Fourier transform of the region from which the projection was
obtained
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lllustration of the Fourier-slice theorem
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FIGURE 5.41
INlustration of the
Fourier-slice theo-
rem.The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
3/11/2014 Note the corre-
spondence of the
angle 6.




Reconstruction Using Parallel-Beam Filtered

Backprojections

f(x,y)= j: _[_z F (u,v)e!” ™ dudy

Let u=wcosé@,v=wsin@g,then dudv =wdwd@,

T(x,y)=

2T

J0
° 27T

.0 L

F (wcos 8, wsin @)e!?7xs0+ysnf\wdwd 4

J0

.ooo G (W, §)e 27 xc0se+ysind\yqd 9

G(w,0+180°) =G(—w, 6)
f (X, y) _ ‘[Oﬁ j_oo | Wl G(W, e)ejznw(xcosewsin@)dwdg
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Reconstruction Using Parallel-Beam Filtered
Backprojections

7T

.I: (X, y) _ ) j_oo | W| G(W, H)ejZEW(XCOSQ+ySin9)deH

It's not [ °° j2zwp
[ integrable QICJWLG (W’ 9)6 dW} _ do
—t P=XC0SA+Yysing

Approach:

Window the ramp so it becomes zero outside of a defined frequency
interval. That is, a window band-limits the ramp filter.
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h(w) = 4

Hamming / Hann Widow

-

27TW
M -1
0 otherwise

c+(c—-1)cos

O<w< (M -1)

\

¢ =0.54, the function is called the Hamming window

¢ = 0.5, the function is called the Han window
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The Plot of Hamming Widow
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FIGURE 5.42

(a) Frequency
domain plot of the
filter |w| after band-
limiting it with a

box filter. (b) Spatial

— domain
Frequency Spatial representation.
domain domain (c) Hamming
windowing function.
(d) Windowed ramp

filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
product (note the

F 1 B
g g

_ decrease in ringing).
Spatial

domain

Frequency Frequency
domain domain
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Filtered Backprojection

The complete, filtered backprojection (to obtain the
reconstructed image f(x,y) ) is described as follows:

Compute the 1-D Fourier transform of each projection

Multiply each Fourier transform by the filter function |w]|
which has been multiplied by a suitable (e.g., Hamming)
window

Obtain the inverse 1-D Fourier transform of each
resulting filtered transform

Integrate (sum) all the 1-D inverse transforms from step
3
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Examples: Filtered Backprojection

images in the first
row. Compare with
Fig.5.40(a).

ab

cd

FIGURE 5.43

Filtered back-
projections of the
rectangle using (a) a
ramp filter,and (b) a
Hamming-windowed
ramp filter. The
second row shows
zoomed details of the
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Examples: Filtered Backprojection

ab

FIGURE 5.44

Filtered
backprojections of
the head phantom
using (a) a ramp
filter,and (b) a
Hamming-windowed
ramp filter. Compare
with Fig. 5.40(b).
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Implementation of Filtered Backprojection In

Spatial Domain

Fourier transform of the product of two frequency domain
functions is equal to the convolution of the spatial
representation

Let s(p) denote the inverse Fourier transform of |w]|

fxy)=|,

T
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J0

["1wicw, Q)ejz”W"dw} do

P=XC0SH+Yysind

s(p) % g(p,0)] do

P=XC0SH+Yysinb

f g(p,8)s(xcosé+ ysin ﬁ—p)dp}dﬁ
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Reconstruction Using Fan-Beam Filtered
Backprojections

O=a+pf

p=DsIna

3/11/2014

Source
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L(p,8)

Center ray

FIGURE 5.45
Basic fan-beam
geometry. The line
passing through
the center of the
source and the
origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.
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Reconstruction Using Fan-Beam Filtered
Backprojections

Objects are encompassed within a circular area of radius T about
the origin of the plane, or g(0,6)=0 for |p|>T

f(x,y)= J‘OE _[_O:O g(p,0)s(xcosd + ysin Q—p)dp}de

:% °02”J'_TT g(p,0)s(xcos@ + ysing - p)d pdd

X=rcos@;y=rsing

XC0SH+ ysin@d =rcosecosd+rsinesind
=1 cos(p—0)
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Reconstruction Using Fan-Beam Filtered
Backprojections

X=rCcose;y=rsing
XC0SH+ ysin@d =rcosepcosd+rsingsind
=1 cos(p — 0)

Fox) =5[] 00 0)s[r costp-0) - p]d pd6
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Reconstruction Using Fan-Beam Flltered
Backprojections |

dpdfd=Dcosadadf

Fouy) =0 [ 9o 0)s(reosto-0)- p]d pdo

:_IZ” ajsm T g(Dsina,a+ f)s|rcos(a+ B —¢)—Dsina|Dcosadad B

sin"!(-T/D)

3/11/2014 128



Reconstruction Using Fan-Beam Filtered
Backprojections

F) =[] 9o 0)sreosto-0) - p)d o

1 e27-a psin(T/D) . \
=§j_ j g(Dsina,a + B)s|rcos(a + f—¢)—Dsina|Dcosadad

—sin}(-T/D)

f(r,p)= %J'OM fa p(a, B)s| Rsin(a'-a) |Dcosadad B

S(Rsina)z( 9 js(a)

Rsina

f(r, ) =_[02”%““;q(a,ﬂ)h(a'—a)da}d,ﬁ

o

() =§(—j s(@),q(c, ) = pl f)Dcos

SINo
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FIGURE 5.48
Reconstruction of
the rectangle
image from
filtered fan
backprojections.
(a) 1° increments
of & and f3.
(b) 0.5°
increments.
(c) 0.25°
increments.
(d) 0.125°
increments.
Compare (d) with
Fig. 5.43(b).
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FIGURE 5.49
Reconstruction of
the head phantom
image from
filtered fan
backprojections.
(a) 1° increments
of @ and B.

(b) 0.5°
increments.

(c) 0.25°
increments.

(d) 0.125°
increments.
Compare (d) with
Fig. 5.44(b).
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