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Fillure IO.3:! E'I;Jmpl~ (If image coding by a two'chann~1 coder. (011On~lnallmag~ 01 5:2
> 5:: pixels: Ib, coded Image:at Ji blls.pixel. ~~lSE = l.U<:C. S:\R = 19.8 dB

It is possible to de'.elop many image representations [Rosenfeld] that can be
viewed as pyramids. In this section. we discuss one particular representation
developed by [Burt and Adelson]. This pyramid representation consists of an
origin:ll image and successively lower resolution (blurred) images and can be used
for image coding.

Let .f..(II,. ":) denOte an original im3ge of .\' x ;\' pixels where.\" = 2 \/ ... I.

for example. 129 x 129_257 x 257_513 x 513. and so forth. It is straightforward
to generate an image of C \/ 1) X (2.\1 1) pixels from an image of 2.\1 x 2 \1
pixels. for example, by simply repeating the last column once and the last row
once. We assume a square image for simplicity. We will refer to UIII' n:) as
the base level image of the pyramid. The image at one level above the base is
obtained by lowpass filtering Iv(II" II:) and then subsampling the .result. Suppose_
we filter fo(lI" ":, with a lowpass filter 1t1l(1I,_II:) and denOte the result by
I~(III, ":) so that

[k(II.- ":) = L[fu(II,- II:)] = fu(1I,. II:) '* hll(lIl_ II:) (10.43)

where L['] is the lowpass filtering operation. Since 1~(1I,. ":) has a lower spatial
resolution than [.,(11,-II:) due to lowpass filtering_we can subsample [,7(111,II:). We
denote the result of the subsampling operation by[.<11,-II:). The image 1.(11,-II:)
is smaller in size than .(,,(111_II:) due to subsampling and is the image at one k,.el
above the base of the pyramid. We willrefer to 1,(111,II:}as the first-levelimag~
of the pyramid. The second-level image,/:(II,_ ":)_ is obtained by lowpass iiltering
the first-level image f;(II" II:) and then subsampling the result. This procedure
can be repeated to generate higher level imagesf:(I1.-":}, f~(I1,-":). andsoforth.

Sec.,0.3 Waveform Coding
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Pyramid Coding and Subband Coding

. Basic Idea: Successive lowpass filtering and
subsampling.

rip" 10.33 Processor generatingthe i + Ith.level image/'..(11.. "2) from the
ith.levelimage/'{II..1Iz)in Gaussianpyramidimagerepresentation.

. Filtering:

fp(nl' n2) = fi(nI, n2) * h(nI, n2)

o <nI,n2< 2M-l
Otherwise

. Type of filter determines the kind of pyramid.

-- -Gaussian -pyramid: h( nl, n2} ...= h( nl)h(n2)
a n=O

h(n) = ~ 1 n = :1:1

t - ~ n = ;j:2

a is between .3 and .6

109
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P~ramid Coding and Subband Coding

. Application to image coding:

- Code successive images do\vn the pyramid
from the ones above it. - - -- -----

- Use intrafram coding techniques to code the
image at top of the pyramid.

- Interpolate fi+l (nl, n2) to obtain a predic-
tion for fi(nl, n2)' .

Ji(nl, n2) = I[fi+l (nl, n2)]

. - Code the prediction error:

ei(nl, n2) = fi( nl, n2) - Ji(nl, n2)

to construct fi( nl, n2)'

- Repeat until the bottom level image, Le. the
original is reconstructed.

. The sequence !i(nl,n2) is a Gaussian Pyramid.
- - -

. The sequence ei(nl, n2) is a Laplacian Pyramid.

. Other examples of Pyramid coding:

- Subband coding.
- Wavelet coding.

;...
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1

Figure 10.36 Exampie of the GauSSIan pyramid representation for image of 513 x 5D pixel;.
wllh K = J.

The Gaussian pyramid representation can be used in developing an approach
to image coding. To code the original image 1\1(111,II:). we code fl(II;. 11:)and the
difference between fur11,.11:)and a prediction of lu(IIJ. II~) from /1(11:. ":). Suppose
we predict fu(1I!. 11:.1by interpolating/l(II!. II~). Denoting the interpolated Image
by f~(lli. II:). we find that the error signal t"J(IIJ. II:) coded is

eo(IlI.II:) = 10(111, II~) - l[1t(II\. II~)I (lOA6)
=fo(lIl. II~) - fj(lIl. II:)

where 1[.] is the s?atial interpolation operation. The interpolation process expands
the support size of 11(111, 11:). and the support size of fj(lIl. II:) is the same as
fill,. 11:). One advantage of coding /1(111,II:) and t'o(lIl. II:) rather than 10(11,.":) is
that the coder used can be adapted to the characteristics of 11(111.11:)and eu(II!. ":1.
Ii we do not quantlze 11(111.11:)and eo(lIl. II:). from (10.46) 10(111.11:)can be recovered

_ exactly by

(10..r7)

In image coding.j:(III. II:) and eo(lIl.II:) are quantized and the reconstructed image
ju(II:. 11:)is obtained from (10.47) by

jo(lIl. II:) = 1[j1(1I1. 11:)] + eo(lIl. 11:) (10AS)

where .fU(III'11:)and eo(lIl. 11:)are quantized versions of fu(lIt. II:) and eo(II!. II:).
If we stop here. the structure of the coding method is identical to the two-channel
coder we discussed in the previous section. The image 11(111,11:)can be viewed
as the subsampled lows component fLS(lII' ":) and eo(1IJ' II:) can be viewed as the
highs component fH(II:. II:) in the system in Figure 10.31.

636 Image Coding Chap. 10



Figure 10.38 Example of the Laplacianpyramid imagerepresentationwith K = 4. The
original image used is the 513 x 513-pixelimage!o(nh n:) in Figure 10.36. t,(n,. n:) [or
0:5 i :5 3 and !.(n,. n:).

the difference of the two Gaussian functions. The difference of two Gaussians

can be modeled [Marr] approximately by the Laplacian of a Gaussian, hence the
name "Laplacian pyramid."

From the above discussion, the pyramid coding method we discussed can be
viewed as an example of subband image coding. A.s we have stated briefly, in
subband image coding. an image is divided into different frequency bands and each
band is coded with its own coder. In the pyramid coding method we discussed.
the bandpass filtering operation is performed implicitly and the bandpass filters
are obtained heuristically. In a typical subband image coder, the bandpass filters
are designed more theoretically [Vetterli; Woods and O'Neil].

Figure 10.39 illustrates the performance of an image coding system in which
fK(nl' n2) and e,(nl, n:) for 0 s is K-1 are coded with coders adapted to the
signal characteristics. Qualitatively, higher-level images have more variance and
more bits/pixel are assign-ed. FortUnately, however, they are smaller in size. -Fig-
ure 10.39 shows an image coded at ! bitipixel. The original image used is the 513
x 513-pixel image fo(nl, n2) in Figure 10.36. The bit rate of less than 1 bitipixel
was possible in this example by entropy coding and by exploiting the observation
that most pixels of the 513 x 513-pixel image eo(nl, n2) are quantized to zero.

One major advantage of the pyramid-based coding method we discussed
above is its suitability for progressive data transmission. By first s-=ndingthe top-
level image fK(nl, n:) and interpolating it at the receiver, we have a very blurred
image. We then transmit eK_I(nl' n2) to reconstruct fK-I(nl, II:), which has a
higher spatial resolution than fK(nl, n2)' As we repeat the process, the recon-
structed image at the receiver will have successively higher spatial resolution. In
some applications, it may be possible to stop the transmission before we fully

Sec. ,0.3 Waveform Coding 639



Figurf 10.39 Example of the laplacian
p~T3mid image coding "'lth K = .Ial
! bit:pixel. The ongmallmage used IS

the 513 x 513'plXellmage joIn,. n:) 10
Figure 10.36.

recover the base level image fu(1I1'n~). For example. we may be able to judge
from a blurred image that the image is not what we want. Fortunately. the images
are transmitted from the top to the base of the pyramid. The size of images
increases by approximately a factor of four as we go down each level of the pyramid.

In addition to image coding. the Laplacian pyramid can also be used in other
applications. For example. as we discussed above. the result of repetitive inter.
polation of E'j(lIj.n2)such that its size is the same as that of fu(II!. II~)can be viewed
as approximately the result of filtering fo(nj. n2) with the Laplacian of a Gaussian.
As we discussed in Section 8.3.3. zero-crossing points of the result of filtering
/0(11).n2) with the Laplacian of a Gaussian are the edge points in the edge detection
method by Marr and Hildreth.

10.3.6 Adaptive Coding and Vector Quantization

The waveform coding techniques discussed in previous sections can be modified
to adapt to changing local image characteristics. In a PCM. system. !he_re~o_n~.
struction levels can be chosen adaptively. In a DM system. the step size .1 can
be chosen adaptively. In regions where the intensity varies slowly. for example.
A can be chosen to be small to reduce granular noise. In regions where the intensity
increases or decreases rapidly. .:1can be chosen to be large to reduce the slope
overload distonion problem. In a DPCM system. the prediction coefficients am.!
the reconstruction levels can be chosen adaptively. Reconstruction levels can also
be chosen adaptively in a two-channel coder and a pyramid coder. The number
of bits assigned to each pixel can also be chosen adaptively in all the waveform
coders we discussed. In regions where the quantized signal varies very slowly. for
example. we may want to assign a smaller number of bits/pixel. It is also possible
to have a fixed number of bits/frame. while the bit rate varies at a pixel level.

In adaptive coding. the parameters in the coder are adapted based on some

640 Image Coding Chap. 10
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Subband Coding

. . . . t 2
X(n)

. . . . t 2

A 1

X(ro) = 2 [Ho(ro)Go(ro) + H1(ro)G1(ro)]X(ro) +

~ [Ho( ro + i)Go( ro) + HI (ro + n)G1 (ro) ]X( ro + n)

Consider QMF Filters:

Ho(ro) = Go(-OO) = F(ro)

jro
HI ( ro) = G 1(-(0) = e F( - ro + 1[)

A 1 ~/

~ X(ro) = 2 [F(ro)F(-ro)+ F(-ro+n)F(ro+n)]/f'0

2 2
IMPOSE: IF(oo)1 +IF(ro+1[)1 = 2

~ X(ro) = X(oo) ~ Perfect Reconstruction



Filter Design:

l..

i
.
I

· QMF filters:

N = # of taps

· Johnston's filter coefficients

ho(N - 1 - n) = ho(n)

~ symetric ~ NPR

8 tap Johnston filters:

h (0) = h (7) = 0.00938

h (1) = h (6) = 0.06942

h (2) = h (5) = -0.07065

h (3) = h (4) = 0.489980
L..



Filter Design

· Cannot have linear phase FIR filters

for QMF condition except for trivial

2 tQP filter

~ amplitude distortion

· Well known filters

Ho(ro) = A(ro) Go(ro) = B(ro)

H1(ro) = ej())B(ro+1t)

G1(ro) = e-j())A(ro+1t)

a(n) = [1,2,1]

hen) = [-1,2,6,2,-1]

~ simple to implement

proposed by LeGa11



Filter Design:

* Smith and Barnwell

h(O) = 0.03489

h(l) = -0.0109

h(2) = -0.0628

h(3) = 0.2239

h(4) = 0.55685

h(5) = 0.35797

h(6) = -0.0239

h(7) = -0.0759

)



Bit Allocation in Subband Codin

R = Average # of bits per sample

RK = Average # of bits per sample of subband K

M = # of subbands

variance of coefficients in subband K:

)

...



2D Subband Coding

· Separable > Easy to implement

. Nonseparable

SeDarable subband Coding:

HaY

H1y

o

)
Analysis



FREOUENCY DOMAIN
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Wavelets

') · A special kind of Subband Transform

· Historically developed independent of
subband coding

K(n)
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Famous Wavelet Filters

'9
. · Daubechies

· Haar

· Coiflet

4 TaD Daubechies Low Pass

h(O) = 0.48291'
.

'3.
r.J

\;<'. '''';"
"I,::~,

h( 1) = 0.8365

h(2) = 0.22414

h(3) = -0.1294




