Fractal Image Compression

By Cabel Sholdt and Paul Zeman

Overview

- Why Fractal Image Compression
- Mathematical Background
- How does it work?
- Examples
- Possible Improvements

Why Fractal Image Compression

- Different type of compression scheme worth exploring
- Takes advantage of similarities within an image
- Advanced detail interpolation
- High theoretical compression rates
- Fast decompression times

Mathematical Background

- Started with Michael Barnsley, and refined by A. Jacquin
- Try and find a set of transforms that map an image onto itself.
- The key is the Collage Theorem
 - States that if the error difference between the target image and the transformation of that image is less than a certain value the transforms are an equivalent representation of the image.

How does it work?-Encoding

- Take a starting image and divide it into small, nonoverlapping, square blocks, typically called "parent blocks".
- Divide each parent block into 4 each blocks, or "child blocks."
- Compare each child block against a subset of all possible overlapping blocks of parent block size.
 - Need to reduce the size of the parent to allow the comparison to work.
- Determine which larger block has the lowest difference, according to some measure, between it and the child block.
- Calculate a grayscale transform to match intensity levels between large block and child block precisely. Typically an affine transform is used (w*x = a*x + b) to match grayscale levels.

How does it work? - Encoding

- Upper left corner child block, very similar to upper right parent block.
- Compute affine transform.
- Store location of parent block (or transform block), affine transform components, and related child block into a file.
- Repeat for each child block.
- Lots of comparisons can calculations.
 - 256x256 original image
 - 16x16 sized parent blocks
 - 241*241 = 58,081 block comparisons

How does it work?- Decoding

- Read in child block and tranform block position, transform, and size information.
- Use any blank starting image of same size as original image
- For each child block apply stored transforms against specified transform block
- Overwrite child block pixel values with transform block pixel values
- Repeat until acceptable image quality is reached.

Examples

Original Image

 Starting Image for Decoding

How does it Work? - Decoding

First Iteration

Second Iteration

How does it work? - Decoding

Fifth Iteration

Tenth Iteration

Possible Improvments

- Greatest weakness is time for encoding
 - Possible speed ups
 - Order transform blocks into domains based off of average intensity and variance
 - Only search through blocks with similar structures
 - Do not search all possible blocks
 - Reduce number of child blocks
- Quality and Compression Improvements through
 - Quadtrees or HV Trees
 - Rotations of Transform Blocks during comparison
 - Improved grayscale transforms

Questions?