Def: Projection: is a mathematical operation that is similar to the physical operation of taking an X-ray photograph with a collimated beam of radiation.
\mathbb{L}_t continuous space

$P\xi(t)$ called projection of $f_{\xi(t)}$
\[P_\theta(t) = \int_{u=0}^{+\infty} f_c(t_1, t_2) \left| \begin{array}{c} t_1 = t \cos \theta - u \sin \theta \\ t_2 = t \sin \theta + u \cos \theta \end{array} \right| \, du \]

Goal: Relate 2D F.T. of \(f_c \) to 1D F.T. of \(P_\theta \)

Projection-Slice Theorem:

\[F_c(x_1, x_2) = 2D \text{ C.T.F.T.} \{ f_c(t_1, t_2) \} = \int_{t_1=-\infty}^{+\infty} \int_{t_2=-\infty}^{+\infty} f_c(t_1, t_2) e^{-j2\pi x_1 t_1} e^{-j2\pi x_2 t_2} \, dt_1 \, dt_2 \]

\[f_c(t_1, t_2) = \frac{1}{4\pi^2} \iint F_c(x_1, x_2) e^{j\frac{2\pi}{x_1} t_1} e^{j\frac{2\pi}{x_2} t_2} \, dx_1 \, dx_2 \]
\[P_\theta(x) = \text{I.D. C.T.F.T.} \left\{ P_\theta(t) \right\} \]
\[P_\theta(x) = \int_{t=-\infty}^{t=\infty} P_\theta(t) e^{-j\pi x t} dt \]

Projection Slice Theorem:

\[P_\theta(x) = F_c \left(r_1, r_2 \right) \bigg|_{r_1 = x \cos \theta} \bigg|_{r_2 = x \sin \theta} \]

\[P_\theta(x) = F_c \left(x \cos \theta, x \sin \theta \right) \]
By taking multiple projections, you get one 2D F.T. of the object.

\[\text{Inverse 2D F.T.} \rightarrow \text{you get the object } f(t_1, t_2) \]
Polar Sampling: Energy are spaced samples.

Fermi dome are equal.
To get blue cartesian samples from red polar samples, interpolate.

\[
\begin{align*}
\text{0th order} & \rightarrow \text{nearest neighbor} \\
\text{1st order} & \rightarrow \text{weighted sum of neighboring samples}
\end{align*}
\]

Concentric Squares. Distance between projection samples in F.D. varies as a function of projection angle.
Reconstruction Strategies

1. Simple Iterative Technique
2. Radon Inversion Formula
3. 1st order Iterative technique
Radar Inversion Formula

\[f_c(t_1, t_2) = \frac{1}{4\pi^2} \iiint F_c(r_1, r_2) e^{j \omega t_1} e^{j \omega t_2} \, dr_1 \, dr_2 \, dr_3 \]

Convert to polar coordinates \(r_1, r_2 \rightarrow \omega, \theta \)

\[f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_0^\infty \int_{-\infty}^{\infty} F_c(\omega \cos \theta, \omega \sin \theta) e^{j \omega (t_1 \cos \theta + t_2 \sin \theta)} \, |\omega| \, d\omega \, d\theta \]

\[P_\theta(\omega) \]

\[I = \left\{ \mathcal{F} \left[P_\theta(\omega) \right] : \left\{ \begin{array}{c} t = t_1 \cos \theta + t_2 \sin \theta \\ |\omega| \end{array} \right. \right\} \]
Define \(G_b(w) = |w| \)

\[
F^{-1} \left\{ G_b(w) \right\} = g_b(t)
\]

\[
I = \int_{-\infty}^{\infty} G_b(w) e^{jw(t_1 \cos \theta + t_2 \sin \theta)} \, dw
\]

\[
I = \begin{bmatrix} g_b(t) \end{bmatrix} \begin{bmatrix} t = t_1 \cos \theta + t_2 \sin \theta \end{bmatrix}
\]

\[
J = g_b(t_1 \cos \theta + t_2 \sin \theta)
\]

\[
f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_0^\pi g_b(t_1 \cos \theta + t_2 \sin \theta) \, d\theta
\]
Recall \(G_\theta (\omega) = P_\theta(\omega) \quad [\text{11}] \)

\[
G_\theta (\omega) = \frac{1}{2} \frac{\omega - 2}{\pi} S_\theta (\omega) \quad \{\theta \}
\]

where

\[
S_\theta (\omega) = S_\theta (\omega) + P_\theta (\omega)
\]

\[
g_\theta (t) = \frac{1}{2} \int_0^\infty P_\theta (\tau) \ d\tau
\]

Plug \(g_\theta (t) \) into \(\theta \)

Convolve with \(k(t) \)

\(\bullet \)

\(\circ \)

\(\ast \)

\(\checkmark \)
at $t = t_0$

$\frac{d}{dt} g(t_0, t_2) = g(t_0)$
Figure 7.13 (a) Polar raster of samples in the Fourier domain, obtained by sampling all projections at the same sampling rate. (b) Concentric squares raster, obtained by varying the sampling rate with the angle of the projection. (Courtesy of Russell M. Mersereau, *Proc. IEEE*, © 1974 IEEE.)

Figure 7.14 Parameters for the definition of zeroth-order and linear interpolation. (Courtesy of Russell M. Mersereau, *Proc. IEEE*, © 1974 IEEE.)
Figure 7.15 Reconstructions of the original image shown in (a) made from 64 equiangular projections using various interpolation algorithms. (b) Zeroth-order interpolation, polar raster. (c) Linear interpolation, polar raster. (d) Linear interpolation, concentric squares raster. (Courtesy of Russell M. Mersereau, Proc. IEEE, © 1974 IEEE.)
Figure 7.16 Reconstructions made using linear interpolation from a concentric squares raster using: (a) 16 projections; (b) 32 projections; (c) 64 projections; (d) 128 projections. (Courtesy of Russell M. Mersereau, Proc. IEEE, © 1974 IEEE.)
filter gain increases with increasing frequency, high-frequency noise will be amplified. Thus to minimize the deterioration that can result from such noise, the filter $k(t)$ is typically chosen to have an approximately linear response out to some cutoff frequency beyond which the response goes to zero. The exact shape of the frequency response is also governed by computational convenience [20, 21].

Some reconstructions obtained using this algorithm are shown in Figures 7.17 and 7.18. The resolution here is noticeably better than for the reconstructions

![Images](a) ![Images](b)

Figure 7.17 Reconstruction of the original image shown below from 64 equiangular projections using the convolution/back-projection method. (a) Concentric squares projections. (b) Polar projections. (c) Original. (Courtesy of Russell M. Mersereau, Proe. IEEE, © 1974 IEEE.)
Figure 7.18 Reconstructions made using the convolution/back-projection method applied to concentric squares projections. (a) 16 projections. (b) 32 projections. (c) 64 projections. (d) 128 projections. (Courtesy of Russell M. Mersereau, Proc. IEEE, © 1974 IEEE.)