1.28. Let \(f(x, y) \) denote a 2-D analog function that is circularly symmetric and can therefore be expressed as

\[
f(x, y) = g(r)|_{r = \sqrt{x^2 + y^2}}.
\]
Let $F(\Omega_\kappa, \Omega_i)$ denote the 2-D analog Fourier transform of $f(x, y)$. For a circularly symmetric $f(x, y)$, $F(\Omega_\kappa, \Omega_i)$ is also circularly symmetric and can therefore be expressed as

$$F(\Omega_\kappa, \Omega_i) = G(\rho)|_{\rho = \sqrt{\Omega_\kappa^2 + \Omega_i^2}}.$$

Note that the analog case is in sharp contrast with the discrete-space case, in which circular symmetry of a sequence $x(n_1, n_2)$ does not imply circular symmetry of its Fourier transform $X(\omega_1, \omega_2)$. The relationship between $g(r)$ and $G(\rho)$ is called the zeroth-order Hankel transform pair and is given by

$$G(\rho) = 2\pi \int_{r=0}^{\infty} rg(r)J_0(\rho r) \, dr$$

and

$$g(r) = \frac{1}{2\pi} \int_{\rho=0}^{\infty} \rho G(\rho)J_0(\rho r) \, d\rho,$$

where $J_0(\cdot)$ is the Bessel function of the first kind and zeroth order. Determine the Fourier transform of $f(x, y)$ when $f(x, y)$ is given by

$$f(x, y) = \begin{cases} 1, & \sqrt{x^2 + y^2} \leq 2 \\ 0, & \text{otherwise.} \end{cases}$$

Note that

$$xJ_1(x)_{|x=a}^{b} = \int_{a}^{b} xJ_0(x) \, dx$$

where $J_1(x)$ is the Bessel function of the first kind and first order.

1.29. Cosine transforms are used in many signal processing applications. Let $x(n_1, n_2)$ be a real, finite-extent sequence which is zero outside $0 \leq n_1 \leq N_1 - 1$, $0 \leq n_2 \leq N_2 - 1$. One of the possible definitions of the cosine transform $C_x(\omega_1, \omega_2)$ is

$$C_x(\omega_1, \omega_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) \cos \omega_1 n_1 \cos \omega_2 n_2.$$

(a) Express $C_x(\omega_1, \omega_2)$ in terms of $X(\omega_1, \omega_2)$, the Fourier transform of $x(n_1, n_2)$.

(b) Derive the inverse cosine transform relationship; that is, express $x(n_1, n_2)$ in terms of $C_x(\omega_1, \omega_2)$.

1.30. In reconstructing an image from its Fourier transform phase, we have used an iterative algorithm, shown in Figure 1.30. The method of imposing constraints separately in each domain in an iterative manner in order to obtain a solution that satisfies all the required constraints is useful in a variety of applications. One such application is the band-limited extrapolation of a signal. As an example of a band-limited extrapolation problem, consider $x(n_1, n_2)$, which has been measured only for $0 \leq n_1 \leq N - 1$, $0 \leq n_2 \leq N - 1$. From prior information, however, we know that $x(n_1, n_2)$ is band-limited and that its Fourier transform $X(\omega_1, \omega_2)$ satisfies $X(\omega_1, \omega_2) = 0$ for $\sqrt{\omega_1^2 + \omega_2^2} \geq \omega_c$. Develop an iterative algorithm that may be used for determining $x(n_1, n_2)$ for all (n_1, n_2). You do not have to show that your algorithm converges to a desired solution. However, using $N = 1$, $x(0, 0) = 1$, and $\omega_c = \frac{\pi}{2}$, carry out a few iterations of your algorithm and illustrate that it behaves reasonably for at least this particular case.
1.31. Let \(x(n_1, n_2) \) represent the intensity of a digital image. Noting that \(|X(\omega_1, \omega_2)| \) decreases rapidly as the frequency increases, we assume that an accurate model of \(|X(\omega_1, \omega_2)| \) is

\[
|X(\omega_1, \omega_2)| = \begin{cases}
Ae^{-2\sqrt{\omega_1^2 + \omega_2^2}}, & \sqrt{\omega_1^2 + \omega_2^2} \leq \pi \\
0, & \text{otherwise}.
\end{cases}
\]

Suppose we reconstruct \(y(n_1, n_2) \) by retaining only a fraction of the frequency components of \(x(n_1, n_2) \). Specifically,

\[
Y(\omega_1, \omega_2) = \begin{cases}
X(\omega_1, \omega_2), & \sqrt{\omega_1^2 + \omega_2^2} \leq \frac{\pi}{10} \\
0, & \text{otherwise}.
\end{cases}
\]

The fraction of the frequency components retained is \(\frac{\pi(\pi/10)^2}{4\pi^2} \), or approximately 1%. By evaluating the quantity

\[
\frac{\sum_{n_1 = -x}^{x} \sum_{n_2 = -x}^{x} (y(n_1, n_2) - x(n_1, n_2))^2}{\sum_{n_1 = -x}^{x} \sum_{n_2 = -x}^{x} x^2(n_1, n_2)}
\]

discuss the amount of distortion in the signal caused by discarding 99% of the frequency components.

1.32. For a typical image, most of the energy has been observed to be concentrated in the low-frequency regions. Give an example of an image for which this observation may not be valid.

1.33. In this problem, we derive the projection-slice theorem, which is the basis for computed tomography. Let \(f(t_1, t_2) \) denote an analog 2-D signal with Fourier transform \(F(\Omega_1, \Omega_2) \).

(a) We integrate \(f(t_1, t_2) \) along the \(t_2 \) variable and denote the result by \(p_0(t_1) \); that is,

\[
p_0(t_1) = \int_{t_2 = -\infty}^{\infty} f(t_1, t_2) \, dt_2.
\]

Express \(P_0(\Omega) \) in terms of \(F(\Omega_1, \Omega_2) \), where \(P_0(\Omega) \) is the 1-D Fourier transform of \(p_0(t_1) \) given by

\[
P_0(\Omega) = \int_{t_1 = -\infty}^{\infty} p_0(t_1)e^{-j\Omega_1 t_1} \, dt_1.
\]

(b) We integrate \(f(t_1, t_2) \) along the \(t_1 \) variable and denote the result by \(p_{\pi/2}(t_2) \); that is,

\[
p_{\pi/2}(t_2) = \int_{t_1 = -\infty}^{\infty} f(t_1, t_2) \, dt_1.
\]

Express \(P_{\pi/2}(\Omega) \) in terms of \(F(\Omega_1, \Omega_2) \), where \(P_{\pi/2}(\Omega) \) is the 1-D Fourier transform of \(p_{\pi/2}(t_2) \) given by

\[
P_{\pi/2}(\Omega) = \int_{t_2 = -\infty}^{\infty} p_{\pi/2}(t_2)e^{-j\Omega_2 t_2} \, dt_2.
\]
(c) Suppose we obtain \(a(t, u) \) from \(f(t_1, t_2) \) by the coordinate rotation given by

\[
a(t, u) = f(t_1, t_2) | _{t_1 = \tau \cos \theta - \mu \sin \theta, t_2 = \tau \sin \theta + \mu \cos \theta}
\]

where \(\theta \) is the angle shown in Figure P1.33(a). In addition, we obtain \(B(\Omega'_1, \Omega'_2) \) from \(F(\Omega_1, \Omega_2) \) by coordinate rotation given by

\[
B(\Omega'_1, \Omega'_2) = F(\Omega_1, \Omega_2) | _{\Omega'_1 = \Omega_1 \cos \theta - \Omega_2 \sin \theta, \Omega'_2 = \Omega_2 \sin \theta + \Omega_1 \cos \theta}
\]

where \(\theta \) is the angle shown in Figure P1.33(b).

![Figure P1.33](image)

Show that \(B(\Omega'_1, \Omega'_2) = A(\Omega'_1, \Omega'_2) \) where

\[
A(\Omega'_1, \Omega'_2) = \int_{t=-\infty}^{\infty} \int_{u=-\infty}^{\infty} a(t, u) e^{-\tau \Omega'_1} e^{-\mu \Omega'_2} \, dt \, du.
\]

The result states that when \(f(t_1, t_2) \) is rotated by an angle \(\theta \) with respect to the origin in the \((t_1, t_2) \) plane, its Fourier transform \(F(\Omega_1, \Omega_2) \) rotates by the same angle in the same direction with respect to the origin in the \((\Omega_1, \Omega_2) \) plane. This is a property of the 2-D analog Fourier transform.

(d) Suppose we integrate \(f(t_1, t_2) \) along the \(u \) variable where the \(u \) variable axis is shown in Figure P1.33(a). Let the result of integration be denoted by \(p_{\theta}(t) \). The function \(p_{\theta}(t) \) is called the projection of \(f(t_1, t_2) \) at angle \(\theta \). Using the results of (a) and (c) or the results of (b) and (c), discuss how \(P_{\theta}(\Omega) \) can be simply related to \(F(\Omega_1, \Omega_2) \), where

\[
P_{\theta}(\Omega) = \int_{t}^{t'} p_{\theta}(t) e^{-\mu \Omega} \, dt.
\]

The relationship between \(P_{\theta}(\Omega) \) and \(F(\Omega_1, \Omega_2) \) is the projection-slice theorem.
1.34. Consider an analog 2-D signal \(s_c(t_1, t_2) \) degraded by additive noise \(w_c(t_1, t_2) \). The degraded observation \(y_c(t_1, t_2) \) is given by

\[
y_c(t_1, t_2) = s_c(t_1, t_2) + w_c(t_1, t_2).
\]

Suppose the spectra of \(s_c(t_1, t_2) \) and \(w_c(t_1, t_2) \) are nonzero only over the shaded regions shown in the following figure.

![Diagram showing the spectra of \(s_c(t_1, t_2) \) and \(w_c(t_1, t_2) \).](image)

Figure P1.34

We wish to filter the additive noise \(w_c(t_1, t_2) \) by digital filtering, using the following system:

\[
y_c(t_1, t_2) \xrightarrow{\text{Ideal A/D}} \ y(n_1, n_2) \xrightarrow{\text{H}(\omega_1, \omega_2)} \ \hat{s}(n_1, n_2) \xrightarrow{\text{Ideal D/A}} \hat{s}_c(t_1, t_2)
\]

\[
y(n_1, n_2) = y_c(t_1, t_2)|_{n_1 = n_1T_1, n_2 = n_2T_2}
\]

\[
\hat{s}_c(t_1, t_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} \hat{s}(n_1, n_2) \frac{\sin \frac{\pi}{T_1} (t_1 - n_1T_1) \sin \frac{\pi}{T_2} (t_2 - n_2T_2)}{\frac{\pi}{T_1} (t_1 - n_1T_1) \frac{\pi}{T_2} (t_2 - n_2T_2)}
\]

Assuming that it is possible to have any desired \(H(\omega_1, \omega_2) \), determine the maximum \(T_1 \) and \(T_2 \) for which \(\hat{s}_c(t_1, t_2) \) can be made to equal \(s_c(t_1, t_2) \).