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ABSTRACT

Banding or false contour is an annoying visual artifact whose impact
negatively degrades the perceptual quality of visual content. Since
users are increasingly expecting better visual quality from such con-
tent and banding leads to deteriorated quality-of-experience, the area
of banding removal or debanding has taken paramount importance.
Existing debanding approaches are mostly knowledge-driven, while
data-driven debanding approaches remain surprisingly missing. In
this work, we construct a large-scale dataset of 51,490 pairs of cor-
responding pristine and banded image patches, which enables us to
make one of the first attempts at developing a deep learning based
banding artifact removal method for images that we name deep de-
banding network (deepDeband). We also develop a bilateral weight-
ing scheme that fuses patch-level debanding results to full-size im-
ages. Extensive performance evaluation shows that deepDeband is
successful at greatly reducing banding artifacts in images, outper-
forming existing methods both quantitatively and visually. The pro-
posed algorithm and dataset are made publicly available. 1

Index Terms— image banding, false contour, debanding, deep
learning, deep convolutional neural network

1. INTRODUCTION

Banding artifacts are common annoyances found in visual content
and caused by quantization, due to issues like compression, tone
mapping, and poor display. They often appear in large regions of
smooth content with low textures and slow gradients, such as sky or
water. Banding manifests as sharp, discrete colour discontinuities
where there otherwise should be smooth transitions, causing notable
degradation in quality. Fig. 1 shows an image with severe banding in
the sky. Recent technological advances, like increases in display res-
olution, have led users to expect better visual quality-of-experience,
where banding artifacts are particularly annoying. Thus, there is an
urgent need to develop accurate banding detection and banding re-
moval (or debanding) methods that are practically applicable.

While some work has been done in banding detection [1, 2, 3, 4]
and removal [5, 6, 7], no banding removal efforts have been made
with deep learning. Contemporary debanding methods [5, 6, 7] are
knowledge-driven, relying on domain knowledge and understanding
of the human visual system [8]. A major disadvantage of such meth-
ods is that they have multiple parameters that must be carefully cal-
ibrated properly for optimal results, which can be a lengthy process.
Additionally, many knowledge-driven methods like [7] use dither-
ing, introducing noise, as a means to lessen the visibility of banding.
However, this process often reduces the visibility of fine texture de-
tails, worsening the user’s quality-of-experience [8]. An alternative

1Access: https://github.com/RaymondLZhou/deepDeband

Fig. 1: Example of banding artifacts present in the sky region.

is to take a data-driven approach where machine learning, especially
deep learning, is employed. Indeed, deep learning techniques have
been widely used in the image restoration context, such as in the re-
moval of noise [9], blur [10], and blocking artifacts [11]. However,
to the best of our knowledge, thus far there have been no efforts to
use deep learning targeted specifically at banding removal.

Our major contributions are as follows. 1) We make one of the
first attempts to develop a deep learning model for removing banding
artifacts caused by quantization from images, taking a banded image
and returning its debanded version, and call it deepDeband. 2) As a
major bottleneck in developing robust deep learning models is a lack
of annotated training data, we create a large dataset of 51,490 corre-
sponding pairs of image patches with and without banding artifacts,
supporting future deep learning debanding work. 3) We present two
techniques of applying deepDeband: a direct global method and a
patch-level method followed by a bilateral weighting scheme.

2. DATASET CONSTRUCTION

To construct a new dataset that enables training of deep learning
based debanding models, we build upon an existing work [2], which
contains 1,439 pairs of pristine and their corresponding quantized
images of 1920×1080 resolution (FHD), where the quantized im-
ages have been segmented and labelled into banded and non-banded
regions. To the best of our knowledge, this is the only publicly
available dataset containing labelled banded images. From each
quantized FHD image, we extract overlapping image patches of size
256×256 with a sliding window of stride 75. Using the provided im-
age labels, we select only those patches that contain banding and also
extract their corresponding patches from the pristine FHD images.
This process results in 51,490 pairs of image patches, which we par-
tition into training (∼60%), validation (∼20%), and test (∼20%)
sets without content-overlapping, such that for any FHD image, all
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(a) Banded FHD image

(b) Banded patch (c) Pristine patch

Fig. 2: Banded FHD image (a), extracted banded patch (b), and cor-
responding pristine patch extracted from the pristine FHD image (c).

Table 1: Dataset composition in terms of patches and FHD images.

Dataset Patches (256×256) FHD (1920×1080)
Training 30,988 872

Validation 10,203 257
Testing 10,299 310
Total 51,490 1439

patches extracted from it belong to the same set. Each set contains
images of diverse visual content, the scale of which allows for devel-
oping deep learning models. This procedure of creating a new patch
dataset was necessary as the existing patches from [2] did not have
matching pristine and banded pairs needed for deep learning tasks.

Fig. 2 shows an example of a banded FHD image with a zoomed-
in banded patch and its corresponding pristine patch that has been
extracted from the respective pristine FHD image. Table 1 provides
a detailed overview of the dataset. Since each FHD image can result
in fairly different numbers of banded patches, the percentage of FHD
images corresponding to each of the training, validation, and test sets
is not in the same proportion as that of the image patches.

3. DEBANDING MODEL DEVELOPMENT

3.1. Deep Debanding Network

We opt to adopt the conditional Generative Adversarial Network
(cGAN) Pix2Pix [12] as the basis of our deep learning model.
Pix2Pix has been successfully used in a wide range of other image-
to-image translation and image restoration tasks, such as denoising
[13], deblurring [14], and dehazing [15], making it promising for
debanding. Compared to other networks with similar architectures,

Pix2Pix has lower complexity and its adversarial objective is ideal
for capturing the nature of banding artifacts and successfully re-
moving them. Pix2Pix contains a generator and discriminator [12].
During training, the model is given corresponding pairs of banded
and pristine patches. The generator takes banded patches and gives
debanded patches as output. The discriminator distinguishes pristine
patches from generated ones. Both parts are trained together, with
the generator and discriminator trying to minimize and maximize
the loss function, respectively [12]. During evaluation, the generator
is given a banded image and produces its debanded version.

We train our debanding model, called deep debanding network
(deepDeband), by using the 30,988 pairs of image patches contained
in the training set of the dataset constructed in Section 2 (Table 1).
Since initial experiments using the Pix2Pix architecture showed
promising results, we focus our attention towards different applica-
tion methods as described in Section 3.2. We also explore different
batch sizes, image augmentation, and dataset compositions, covered
in Section 3.3. All hyperparameters other than batch size are the
same as the default implementation of Pix2Pix [12].

3.2. Application to Images

Although deepDeband is trained on 256×256 patches, we need to
apply it on images of larger sizes (e.g., 1920×1080 FHD images).
We use two techniques to do so. The first method, named deep-
Deband Full image (deepDeband-F), directly applies the network to
the full image. Since the Pix2Pix generator is fully convolutional
[12], deepDeband can be applied to images of any size, though here
we focus on FHD images. The Pix2Pix generator expects an input
whose width and height dimensions are divisible by 256, so we first
pad the input FHD image to 2048×1280 through mirroring. We then
crop the debanded image returned by the model back to 1920×1080.
Padding the input with black or white results in unwanted textures,
likely as the solid colour is unnatural visual content.

Our second method operates at the patch-level. First, we pad the
input FHD image to 2048×1280 and extract overlapping 256×256
patches with a stride of 128, and deepDeband is applied to all
patches. A pixel in the image may be covered by multiple patches,
where the i-th patch produces a prediction pi of the subject pixel.
These predictions may be different, and merging non-overlapping
patches or using a simple average may result in undesirable visible
patch boundaries. Presumably the image patches that are closer to
the subject pixel should carry more weights, where the closeness
may be in terms of the geometric distances or content intensity
values. Therefore, we compute both the geometric distance, dg ,
between the patch center and the subject pixel, and the root mean
squared (RMS) difference, dc, between the intensities of the subject
pixel and all pixels in the patch. We then define a bilateral weighting
function with a two-dimensional Gaussian profile:

w = exp

(
−
d2g
2σ2

g

− d2c
2σ2

c

)
, (1)

where σg and σc control the decaying speeds of the Gaussian profile.
Finally, we compute the reconstructed subject pixel value pr using a
bilateral weighting scheme given by

pr =

∑N
i=1 wipi∑N
i=1 wi

, (2)

where N is the number of patches that cover the subject pixel. This
bilateral weighting approach allows us to make the best use of over-
lapping patches to produce a smooth spatial transition across the im-
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(a) Banded FHD image (b) deepDeband-F FHD image (c) deepDeband-W FHD image

Fig. 3: Banding in banded FHD image (a) is significantly reduced in deepDeband-F (b) and deepDeband-W (c) FHD images.

Table 2: Mean validation scores of deepDeband-F for different patch
sizes. Optimal values are in bold.

Dataset DBI ↓ [2] BBAND ↓ [1]
256 × 256 patches 0.2028 0.1803
572 × 572 patches 0.3495 0.1896

1920 × 1080 FHD images 0.2763 0.1870

Table 3: Mean validation scores of deepDeband-F for different
dataset compositions. Optimal values are in bold.

Dataset DBI ↓ [2] BBAND ↓ [1]
Banded patches, no flipping 0.2028 0.1803

Banded patches, with flipping 0.2037 0.1848
All patches, no flipping 0.3114 0.1926

All patches, with flipping 0.3240 0.1924

age. Finally, we crop the output to 1920×1080. We name this ver-
sion of the model deepDeband Weighted merge (deepDeband-W).
Fig. 3 shows an image example, where banding in the smooth re-
gions is greatly removed while sharp textures remain well-preserved.

3.3. Validation

Since losses reported by GANs are not meaningful due to their ad-
versarial nature [16], we apply DBI [2] and BBAND [1] as eval-
uation metrics on the validation set of our dataset. Both DBI and
BBAND are no-reference banding assessment indices, making them
an ideal choice for this task. For both DBI and BBAND, a smaller
value indicates less banding. To explore the optimal training condi-
tions for our deep learning models, we create additional datasets and
use the deepDeband-F model in the subsequent analysis.

First, to ascertain the optimal patch size for training, we train
the deepDeband model on banded (and their corresponding pristine)
patches of size 256×256 and 572×572, and on 1920×1080 FHD
images at a fixed batch size of 8. Table 2 shows the outcome of this
experiment in terms of DBI and BBAND, where it can be seen that
using the smaller 256×256 patches leads to superior performance,
even when applied directly at the image-level, as in deepDeband-F.
This is likely because using smaller patch sizes gives more training
examples, an important requirement for deep learning.

Next, we investigate different dataset compositions, using
patches of size 256×256 and batch size 8. Beyond the dataset
of only banded patches from Section 2, we use datasets containing
patches of all types of visual content (banded and non-banded). We
also try data augmentation through horizontal flipping. Table 3 sum-
marizes the results in terms of DBI and BBAND, where we see that
including all types of patches and incorporating horizontal flipping
leads to poor performance, which visibly manifests as undesirable

textures introduced in the output images. This finding is somewhat
counterintuitive and is worth investigating further. Based on results
shown in Tables 2 and 3, we finalize the dataset of only banded
256×256 patches, discussed in Section 2, for model training.

Finally, we vary batch size between 2, 4, 8, and 16, finding
smaller values tend to give better results. We train the model for 200
epochs, choosing the epoch with best performance on the validation
set, for DBI and BBAND, as our final deepDeband models.

4. PERFORMANCE COMPARISON

To the best of our knowledge, deepDeband is so far the only deep
learning based debanding method. Thus, we compare its perfor-
mance against three most recent state-of-the-art knowledge-driven
debanding methods, FFmpeg’s deband filter [5], AdaDeband [6], and
FCDR [7], on the 310 FHD PNG images in the test set of our dataset
(Table 1). We use default parameters for FFmpeg. For AdaDeband,
originally designed for YUV420p videos, we test the following four
versions. 1) AdaDeband 1: The original YUV420p version with de-
fault parameter settings; 2) AdaDeband 2: The YUV420p version
with parameter settings recommended by the authors for H.264 en-
coded frames (since images in [2], on which our dataset is built,
were extracted from H.264 encoded videos); 3) AdaDeband 3: To
prevent any loss in colour due to chroma subsampling to YUV420p,
we implement a YUV444p version with default parameter settings;
4) AdaDeband 4: The YUV444p version with parameter settings
as in AdaDeband 2. Since the full implementation of FCDR is not
publicly available, we implement it ourselves by building upon code
provided in [6]. We try nine different parameter settings and choose
the top two performers, which we call FCDR 1 and FCDR 2.

For evaluation, we use both DBI [2] (data-driven) and BBAND
[1] (knowledge-driven), which to the best of our knowledge are the
only publicly available banding assessment indices, making them
most appropriate for our analysis. For BBAND, we choose param-
eter settings based on the authors’ recommendations for content in
our test set. As additional evaluation metrics, we use three blind im-
age quality assessment (BIQA) methods of varying design philoso-
phies, which are shown to be top performers in the BIQA area in
[17]. These include HOSA (opinion-aware) [18], dipIQ (opinion-
unaware) [19], and ILNIQE (opinion-unaware) [20].

Table 4 shows the performance of debanding methods in terms
of mean evaluation metric scores, including the original banded im-
ages as a baseline. Notably, deepDeband-F outperforms all existing
methods at all metrics except FCDR 1 at dipIQ, and its DBI score is
second only to that of deepDeband-W. Similarly, deepDeband-
W surpasses all existing methods except FFmpeg at BBAND,
and FCDR 1 and FCDR 2 at dipIQ, making it as competitive as
deepDeband-F. Furthermore, deepDeband-F and deepDeband-W
perform significantly better than FCDR 1 and FCDR 2 for all met-
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Table 4: Quantitative performance comparison of debanding methods in terms of mean evaluation metric scores on the entire test set. Optimal
values are in bold. The arrow besides each metric name shows whether higher or lower mean values are better.

Model DBI ↓ [2] BBAND ↓ [1] dipIQ ↑ [19] HOSA ↓ [18] ILNIQE ↓ [20]
Banded Images 0.4059 0.3830 -6.5261 34.8581 29.7630

FFmpeg [5] 0.2240 0.1523 -5.8885 34.6408 30.0330
AdaDeband 1 [6] 0.3414 0.2085 -6.3723 34.8560 28.3333
AdaDeband 2 [6] 0.3358 0.2060 -6.3735 34.9581 28.4328
AdaDeband 3 [6] 0.3374 0.2163 -6.4375 35.1767 28.1319
AdaDeband 4 [6] 0.3328 0.2135 -6.4370 35.1811 28.2034

FCDR 1 [7] 0.3980 0.3468 -4.9563 35.4358 29.0935
FCDR 2 [7] 0.3813 0.3538 -5.3961 35.7727 28.8689

deepDeband-F 0.2026 0.1518 -5.3110 32.8358 25.4175
deepDeband-W 0.1774 0.1629 -5.7636 34.4330 25.8048

Banded FHD Image (a) (b) (c) (d) (e) (f)
Fig. 4: Visual performance comparison of banded (a) and debanded content using FFmpeg (b), AdaDeband 4 (c), FCDR 2 (d), deepDeband-F
(e), and deepDeband-W (f).

Table 5: Execution time comparison. Optimal values are in bold.

Model Time (seconds) ↓
FFmpeg [5] 1.2907

AdaDeband 1 [6] 10.6903
AdaDeband 2 [6] 12.7411
AdaDeband 3 [6] 10.9448
AdaDeband 4 [6] 12.8803

FCDR 1 [7] 23.4890
FCDR 2 [7] 38.7096

deepDeband-F 10.0121
deepDeband-W 283.0539

rics except dipIQ, especially in terms of DBI and BBAND. We also
present a visual comparison of the results in Fig. 4, as the ultimate
goal is to reduce human perception of banding. It can be seen that
although FFmpeg, AdaDeband 4, and FCDR 2 reduce the visibility
of banding, the banding contours are still visible, which are hardly
discerned in images produced by deepDeband methods.

Finally, we evaluate the execution time of different methods to
deband one FHD image on a machine with a 2.70GHz Intel Core i7-
7500U processor and 8GB of RAM. Table 5 shows the results for this

experiment, where it can be seen that deepDeband-F is faster than all
other methods except FFmpeg, while deepDeband-W is the slowest,
which can be attributed to the weighted merge approach that it takes.
Both of our models can be accelerated by GPUs during evaluation.

5. CONCLUSION

We propose the first deep learning based model of its kind for remov-
ing banding artifacts from images, deepDeband. It possesses none
of the disadvantages of existing knowledge-driven methods, such as
the need to carefully fine-tune parameters, and can be applied to im-
ages of any size. Extensive performance evaluation shows that deep-
Deband outperforms all existing debanding methods, both quanti-
tatively and visually. We create a dataset of 51,490 pairs of image
patches, comprised of corresponding banded and pristine patches.
We also present a novel bilateral weighting method of application at
the patch-level. The model builds the foundation to support future
work in deep learning based banding removal. While our current ap-
proach focuses on FHD images with standard dynamic range, it can
be extended to content in ultra high definition, high dynamic range,
and wide colour gamut, where banding is even more pronounced.
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