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ABSTRACT

The present work presents an artificial neural network archi-
tecture for the restoration of images damaged by underexpo-
sure and overexposure. The problem is relevant in computer
vision applications that are applied in conditions where the
limitation of the sensor prevent the scene details from be-
ing adequately represented in the captured image. This re-
search presents an attention-based architecture composed of
two convolutional neural networks, where one performs a pre-
processing of the input image, while the other performs the
restoration and enhancement of the degraded image. Regard-
ing the evaluation of research results, a broad range of image
quality metrics is used to assess the quality of the results pro-
duced by the model. The obtained results indicate that the
proposed architecture is able to enhance images damaged by
exposure heterogeneity, offering gains over state-of-art mod-
els in real data.

Index Terms— Deep Learning, Image Processing, En-
hancement, Attention

1. INTRODUCTION

Digital image processing is primarily aimed at improving vi-
sual information for human interpretation, as well as process-
ing image data for storage, transmission and representation,
considering automatic perception through visual computation
[1]. When it comes to image processing, a system has been
defined where its input and output are an image, Scenes with
a wide range of intensities values represent a challenge for
image acquisition systems, directly impacting the final result.
Images acquired from conventional cameras, which operate in
the visible light spectrum, are commonly affected by artifacts
and distortions resulting from excess or lack of light. Scene
radiance outside the limits of the acquisition system results in
underexposure and overexposure [2].

In image processing, underexposure is a phenomenon that
occurs when the camera sensor is unable to capture differ-
ences between the darkest parts of the image, thus causing
only the details located in the brightest regions of a pho-
tographed scene to be seen. Underexposure can be caused

by a number of factors, including insufficient lighting, ex-
posure time that is too short, or the lens iris aperture being
too small. On the other hand, overexposure occurs when the
sensor receives too much light, being a phenomenon caused
by parameters wrongly configured in the camera.

Estimating the irradiance of an improperly exposed image
requires restoration and enhancement of the non-clipped pix-
els to maximize visibility and color accuracy, as much as it
requires reconstruction strategies for regions where the signal
has been clipped. In this sense, deep learning models over-
come the limitations of classical image enhancement meth-
ods by being able to learn objects, textures, and patterns from
examples.

The present work proposes a neural architecture for
single-shot contrast enhancement and image reconstruction
for poorly exposed color images, composed of two networks:
one dedicated to generating an exposure map of the degraded
image; and the other for the purpose of restoring lost infor-
mation and highlighting mismatched information. The main
contributions of this work are summarized as follows:

• A new fast and small-scale deep learning architecture
for image enhancement is presented.

• A degradation weighting function is projected to indi-
cate where the information was most affected by ill-
exposure degradation.

• Improved quantitative performance for ill-exposed im-
ages compared with state-of-the-art.

2. RELATED WORKS

For ill-exposed images, luminance and color correction in-
corporate elements from distinct areas of image processing
such as contrast enhancement, signal reconstruction, noise
suppression, tone mapping, and image completion. Thus, the
literature includes histogram equalization [3], dehaze-based
contrast enhancement [4], Retinex based contrast enhance-
ment [5], camera response based models [6], as well as ex-
posure fusion based models [7].

All of the previous methods do not use any neural net-
work approach. Deep learning based image processing has
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gained a lot of attention in recent years. Its applications in-
clude super-resolution [8], inpainting [9], as well as general
image enhancement [10, 11], low light image enhancement
[12], and sRGB ill-exposure correction [13, 14, 15].

3. METHOD

3.1. Network Architecture

This section presents a proposed solution based on convolu-
tional neural networks using an internal and external atten-
tion approach of the image restoration model. A small and
efficient architecture is modeled, to produce qualitatively and
quantitatively better results and that uses little computational
resources, when compared to current deep learning architec-
tures for image restoration tasks. Figure 1 presents a detailed
view of the idealized architecture.

Attention Network. The attention network aims to gen-
erate an attention map, where the degradation resulting from
inappropriate exposure has been highlighted. The main idea
is to direct the restoration network to the places in the image
where more focus should be given to restore the information
present in the image. The attention network is represented by
Figure 1b based on [11]. In the proposed model, the degraded
image is submitted to seven convolutional blocks to obtain the
exposure map (EM). The expansion rate of the convolutions
of each block is defined by δdilat = 2n−1, where n = [1, 7] is
the number of the convolutional block. In the end, the image
is processed with two more convolutional layers to generate
an attention map.

The generated exposure map is defined by the equations
1 (underexposure), and 2 (overexposure), generating an array
with values range [0, 1],

MEsub =
| max(Ĩ)−max(I) |

max(Ĩ)
, (1)

MEsup =
| min(Ĩ)−min(I) |

max(inver(Ĩ))
, (2)

where Ĩ and I represent respectively the reference image
and the input image; the max() and min() functions return
respectively an array with the maximum and minimum value
of each pixel per channel; and the inver(·) function returns
the absolute value of subtracting the input image from the
highest-valued pixel.

Enhancement Network. The proposed restoration net-
work aims to restore the poorly exposed image, focusing on
the regions most affected by degradation 1c. It combines
properties of the U-Net [16] and CAN (Context Aggregation
Network) [11] structures. Its become a compact model with
a small number of weights when a encoder-decoder model,
combined with dilated convolutions.

Trainable convolutional layers were chosen to perform
the down-sampling of the encoder instead of pooling alter-

(a) Macro architecture overview

(b) Attention network overview

(c) Enhancement network overview

Fig. 1. Overview of the proposed architecture.

natives. Convolutional layers are flexible and converge to a
better combination for extracting features at the expense of
training, whereas pooling layers have fixed characteristics.
The decoder uses up-sampling by nearest neighbors followed
by a convolution layer. The encoder-decoder is connected by
skip-connections where the uppermost one has a block with
two layers of convolutions in order to aggregate the structural
information of the input. The output of this block is com-
bined with the lower flow of the network through a convolu-
tional block that acts as a fusion mechanism for the restored
information with the structural information present in the in-
put image.

3.2. Attention and Context Aggregation Block (ACAB)

The Attention and Context Aggregation Block (ACAB) (fig-
ure 2) is a combination of layers in order to work with a large
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receptive field and to have the ability to pay attention to im-
portant features. The main idea is to create a block with the
task of directing and restoring the ”most lost” information due
to ill-exposure.

First, ACAB starts with a layer of four parallel di-
lated convolutions. The rate of expansion is described
in the form 2n−1, where n defines the block and n ={
x ∈ Z∗

+ | 1 ≤ x ≤ 4
}

. Then, the information pass through
a channel attention sub-block (AC) and a spatial attention
sub-block (AS) to generate the output. the AC block is com-
posed of two pooling functions (maximum and average) of
dimension 1 × 1 × C connected in parallel followed by an
MLP (Multilayer Perceptron). Its two outputs are added and
applied to a sigmoid function, returning an attention map
for the channel. The AS block is composed of a maximum
pooling function followed by an average pooling (both of
dimension H × W × 1), with a convolution layer followed
by a sigmoid function generation the spatial attention map.

Fig. 2. ACAB architecture overview.

3.3. Loss Function

Attention Loss. The loss funcion for Attention Network is
the Mean Square Error (MSE). The MSE is a function that
corresponds to the expected value of the squared error loss.
Equation 3 defines attention loss.

Laten = MSE(I, Ĩ). (3)

Enhancement Loss. The loss function for Enhancement
Network aims to emphasize regions of the image closer to the
edge, where they are more likely to suffer the adverse effects
of inadequate exposure. This objective function combines
structural dissimilarity (DSSIM) and pixel-by-pixel absolute
weighted error. Equation 4 defines enhancement loss.

Lenh(I, Ĩ) = λDSSIM(I, Ĩ)+ (1−λ)|Ĩ−0, 5 | · | I− Ĩ |,
(4)

where λ = 0.76 is an empirical constant that was found
to be more reasonable during training phase.

4. EXPERIMENTS

4.1. Datasets

We used four sets of images with ill-exposure degradation.
Half of them are simulated making use of the equation given
by:

I = f(Ĩ , α, β, γ) = β · (α · Ĩ)γ , (5)

where Ĩ is the reference image, I is the resulting degraded
image, f(·) denotes the exposure degradation function, α, β
and γ are constants generated from a uniform distribution pre-
sented earlier for underexposure in [18], and extended in this
work to overexposure. The simulate datasets are generated
with α = [0.9, 1

0.9 ]; β = [0.5, 1
0.5 ]; and γ = [ 1

1.5 , 1.5].
Simulated: FiveK-based and HDR+ Burst. The MIT-

Adobe FiveK Dataset [19] contains 5,000 photographs shot
with SLR cameras from a variety of photographers. The
HDR+ Burst Photography Dataset, initially presented by
Hasinoff et al. [20], comprises sequences of images in differ-
ent exposures by smartphone cameras.

Real: A6300 and Cai Multi-Exposure Datasets. Pro-
posed by Steffens et al.[17], the A6300 dataset is composed
of sets of 4 images for each scene: an appropriately exposed
image using a single photograph, an underexposed image, an
overexposed image, and a composition of the previous ones
using the Tone Mapping method. The Cai dataset, presented
in [13], it consists of 589 image sets with separate exposure
settings for each scene and a tone-mapped composition.

4.2. Implementation Details

The proposed model is adjusted and tested on three different
sets of images (FiveK, HDR+ Burst and Cai Multi-Exposure).
In all cases, 70% of the dataset is used for training and the
remainder for testing. The A6300 dataset is used only in test-
ing phase with a state-of-art method. The samples used for
each stage are selected at random. The Adam optimizer [21]
is used with the standard hyper-parameters. Weights are up-
dated in mini-batches of 8 images with varying resolution. All
data used for training is paired.

Training for underexposed and overexposed images is car-
ried out separately, resulting in a specific model for restor-
ing underexposed images and a specific model for overex-
posed images. Training is terminated once 300 batches of im-
ages are processed without making improvements larger than
10−5.

4.3. Main Results

This section presents a quantitative comparison of the pro-
posed method with some image enhancement methods in
the literature. The results presented are with data reserved
for testing. Numerical evaluation includes several image
quality measurements, including the classic signal-to-noise
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Table 1. Comparison results of mean value of presented metrics .
Under Over

Method PSNR↑ MSE↓ MAE↓ SSIM↑ Sobel
IoU ↑ Canny

IoU ↑ Hist.
Diff.↓ PSNR↑ MSE↓ MAE↓ SSIM↑ Sobel

IoU ↑ Canny
IoU ↑ Hist.

Diff.↓

Proposed 28.862 0.001 0.029 0.962 0.862 0.716 4.299 28.898 0.002 0.029 0.974 0.856 0.692 4.619
[17] 22.865 0.009 0.072 0.895 0.766 0.629 5.608 20.058 0.012 0.077 0.886 0.704 0.492 5.443
[16] 22.537 0.008 0.067 0.845 0.625 0.537 5.568 18.332 0.016 0.092 0.811 0.568 0.403 5.394
[11] 21.201 0.011 0.079 0.866 0.678 0.531 6.514 19.022 0.014 0.086 0.874 0.675 0.438 4.967
[3] 17.109 0.022 0.116 0.759 0.606 0.345 6.889 12.004 0.066 0.210 0.739 0.560 0.295 6.438
[7] 17.581 0.025 0.121 0.778 0.615 0.421 6.380 9.745 0.110 0.298 0.697 0.561 0.312 8.159
[5] 16.706 0.037 0.148 0.686 0.640 0.470 6.461 12.427 0.063 0.204 0.767 0.577 0.355 6.524
[4] 16.194 0.030 0.134 0.711 0.542 0.264 6.808 13.481 0.102 0.287 0.681 0.506 0.284 7.972
[6] 15.746 0.027 0.137 0.753 0.575 0.351 6.958 9.276 0.120 0.325 0.669 0.538 0.294 8.354

None 16.150 0.069 0.189 0.610 0.617 0.523 7.291 11.431 0.081 0.235 0.777 0.601 0.381 7.308

ratio (PSNR), pixel-to-pixel mean absolute error (MAE), root
mean square error (MSE) and structural similarity (SSIM),
Sobel intersection over union, Canny intersection over union,
and histogram difference.

Table 1 compares the proposed model with neural-based
models [16, 11, 15]. It also compares to classic image en-
hancement approaches (which do not employ deep learning)
[3, 4, 5, 7, 6]. The unprocessed images are also included in
the comparison to allow an observation of the gain provided
by the enhancement models. The proposed architecture out-
performs all the compared models in all compared metrics.

The A6300 dataset [17] was used to compare with a state-
of-art model. None of the methods had access to the data
previously. Table 2 presents the mean values of the metrics for
both methods. The proposed method outperforms [14] in all
the quantitative metrics, demonstrating a better generalization
of the problem of ill-exposed images. Table 3 represents a
ablation study applied proving that the complete architecture
is necessary to resolve the problem.

Table 2. Comparison with a state-of-art method.
Method PSNR↑ MSE↓ MAE↓ SSIM↑ Sobel

IoU ↑ Canny
IoU ↑ Hist.

Diff.↓

[14] 18.669 0.019 0.111 0.819 0.614 0.378 6.652
Proposed 28.028 0.002 0.034 0.954 0.777 0.645 4.497

Table 3. Ablation study for the proposed method.

Configuration PSNR↑ MSE↓ MAE↓ SSIM↑ Sobel
IoU ↑ Canny

IoU ↑ Hist.
Diff.↓

w/o AN and ACAB 16.349 0.023 0.130 0.769 0.541 0.394 7.132
w/o AN 21.026 0.008 0.071 0.888 0.678 0.412 6.049
w/o AB 25.214 0.003 0.041 0.960 0.830 0.621 4.628

Completed 27.070 0.002 0.033 0.959 0.820 0.634 4.183

5. CONCLUSION

We proposes a new fast and small-scale deep learning ar-
chitecture for single-shot contrast enhancement and feature
reconstruction of poorly exposed RGB images. Numeric

Fig. 3. Qualitative results of proposed method applied in real
images. The first column is input image; the second one is the
output image; and the third one is the reference image.

comparison with others methods using four distinct datasets
has shown our model significantly better in terms of bright-
ness adjustment, contrast enhancement, image completion,
and edge restoration. A ablation study confirms that the At-
tention Network with ACAB added on Enhancement Network
brings satisfactory results for all scenarios. As future work,
we plan to optimize the smoothness of recovered regions
(de-blocking), the synthesis of texture, and the completion of
broad clipping utilizing semantic characteristics.
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