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Image Restoration

► Image restoration: recover an image that has been 
degraded by using a prior knowledge of the degradation 
phenomenon.

► Model the degradation and applying the inverse process in 
order to recover the original image.
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A Model of Image Degradation/Restoration 
Process  

►Degradation
§ Degradation function H
§ Additive noise ),( yxh
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A Model of Image Degradation/Restoration 
Process  

If  is a  process, then 
the degraded image is given in the spatial domain by
           ( , ) ( , )   ( , ) ( , )

H linear, position-invariant

g x y h x y f x y x yh= +
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A Model of Image Degradation/Restoration 
Process  

The model of the degraded image is given in 
the frequency domain by

       ( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +
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Noise Sources  

► The principal sources of noise in digital images arise during 
image acquisition and/or transmission  

ü Image acquisition
e.g., light levels, sensor temperature, etc.

ü Transmission
e.g., lightning or other atmospheric disturbance in wireless 
network
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Noise Models (1) 

► White noise
§ The Fourier spectrum of noise is constant

► With the exception of spatially periodic noise, we assume
§ Noise is independent of spatial coordinates
§ Noise is uncorrelated with respect to the image itself
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Noise Models  (2)

Ø Gaussian noise
Electronic circuit noise, sensor noise due to poor illumination and/or 
high temperature

Ø Rayleigh noise
Range imaging
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Noise Models (3) 

Ø Erlang (gamma) noise: Laser imaging

Ø Exponential noise: Laser imaging

Ø Uniform noise: Least descriptive;    Basis for numerous random 
number generators

Ø Impulse noise: quick transients,
such as faulty switching 
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Gaussian Noise (1)  

2 2( ) /2

The PDF of Gaussian random variable, z, is given by
1                      ( )

2
z zp z e s

ps
- -=

where,   represents intensity

             is the mean (average) value of z
             is the standard deviation

z

z
s
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Gaussian Noise (2) 

2 2( ) /2

The PDF of Gaussian random variable, z, is given by
1                      ( )

2
z zp z e s

ps
- -=

§ 70% of its values will be in the range

§ 95% of its values will be in the range

[ ])(),( sµsµ +-

[ ])2(),2( sµsµ +-
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Rayleigh Noise  

2( ) /     

The PDF of Rayleigh noise is given by
2 ( ) for 

        ( )
0                          for 

z a bz a e z a
p z b

z a

- -ì - ³ï= í
ï <î

2

The mean and variance of this density are given by

            / 4
(4 )           

4

z a b
b

p
ps

= +
-

=



10/15/22 13

Erlang (Gamma) Noise  

1
    

The PDF of  Erlang noise is given by

       for 0
        ( ) ( 1)!

0                          for 

b b
aza z e z

p z b
z a

-
-ì

³ï= -í
ï <î

2 2

The mean and variance of this density are given by

            /
           /

z b a
b as

=

=
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Exponential Noise  

    

The PDF of  exponential noise is given by

         for 0        ( )
0                  for 

azae z
p z

z a

-ì ³
= í

<î

2 2

The mean and variance of this density are given by

            1/
           1/

z a
as

=

=
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Uniform Noise  

The PDF of  uniform noise is given by
1          for a

        ( )
0                  otherwise

z b
p z b a

ì £ £ï= -í
ïî

2 2

The mean and variance of this density are given by

            ( ) / 2
           ( ) /12

z a b
b as

= +

= -
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Impulse (Salt-and-Pepper) Noise  

The PDF of  (bipolar) impulse noise is given by
          for 

        ( )           for 
0          otherwise

a

b

P z a
p z P z b

=ì
ï= =í
ï
î

If either  or  is zero, the impulse noise is calleda bP P
unipolar

if ,  gray-level  will appear as a light dot, 
while level  will appear like a dark dot.
b a b

a
>
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Examples of Noise: Original Image
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Examples of Noise: Noisy Images(1)
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Examples of Noise: Noisy Images(2)
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Periodic Noise

► Periodic noise in an image arises typically from electrical or 
electromechanical interference during image acquisition.

► It is a type of spatially dependent noise

► Periodic noise can be reduced significantly via frequency 
domain filtering
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An Example of Periodic Noise
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Estimation of Noise Parameters (1)

The shape of the histogram identifies the closest PDF match
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Estimation of Noise Parameters (2)

Consider a subimage denoted by , and let ( ), 0,  1,  ...,  -1,  
denote the probability estimates of the intensities of the pixels in . 
The mean and variance of the pixels in :

                   

s iS p z i L
S

S

=

1

0
1

2 2

0

     ( )   

and                  ( ) ( )   

L

i s i
i
L

i s i
i

z z p z

z z p zs

-

=

-

=

=

= -

å

å
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Restoration in the Presence of Noise Only
̶ Spatial Filtering

Noise model without degradation
         ( , ) ( , ) ( , )
and
        ( , ) ( , ) ( , )                       

g x y f x y x y

G u v F u v N u v

h= +

= +
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Spatial Filtering: Mean Filters (1)

Let  represent the set of coordinates in a rectangle 
subimage window of size , centered at ( , ).

xyS
m n x y´

( , )

Arithmetic mean filter
1                ( , ) ( , )

xys t S
f x y g s t

mn Î

= å

Smooths local variation in an image; 
Noise is reduced as a result of blurring
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Spatial Filtering: Mean Filters (2)

1

( , )

Geometric mean filter

                ( , ) ( , )
xy

mn

s t S
f x y g s t

Î

é ù
= ê ú
ê úë û
Õ

Generally, a geometric mean filter achieves smoothing 
comparable to the arithmetic mean filter, but it tends to 
lose less image detail in the process
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Spatial Filtering: Mean Filters (3)

( , )

Harmonic mean filter

                ( , ) 1
( , )

xys t S

mnf x y

g s tÎ

=
å

It works well for salt noise, but fails for pepper noise.
It does well also with other types of noise like Gaussian 
noise.
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Spatial Filtering: Mean Filters (4)

1

( , )

( , )

Contraharmonic mean filter
( , )

                ( , )
( , )

xy

xy

Q

s t S
Q

s t S

g s t
f x y

g s t

+

Î

Î

=
å

å

Q is the order of the filter.

It is well suited for reducing the effects of salt-and-
pepper noise. Q>0 for pepper noise and Q<0 for salt 
noise.
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Spatial Filtering: Example (1)
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Spatial Filtering: Example (2)
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Spatial Filtering: Example (3)

For contraharmonic filter, MUST know  weather noise is
Salt or pepper.
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Spatial Filtering: Order-Statistic Filters (1)

{ }
( , )

Max filter

                ( , ) max ( , )
xys t S

f x y g s t
Î

=

{ }
( , )

Median filter

                ( , ) ( , )
xys t S

f x y median g s t
Î

=

{ }
( , )

Min filter

                ( , ) min ( , )
xys t S

f x y g s t
Î

=

Effective in the presence of both unipolar and bipolar noise

Reduces pepper noise; finds brightest point in an image

Reduces salt noise; finds darkest point in an image
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Spatial Filtering: Order-Statistic Filters (2)

{ } { }
( , )( , )

Midpoint filter
1      ( , ) max ( , ) min ( , )
2 xyxy s t Ss t S

f x y g s t g s t
ÎÎ

é ù= +ê úë û

Combines order statistics and averaging
Works best for randomly distributed noise e.g. Gaussian or unfiorm
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Spatial Filtering: Order-Statistic Filters (3)

{ }
( , )

Alpha-trimmed mean filter
1      ( , ) ( , )

xy

r
s t S

f x y g s t
mn d Î

=
- å

We delete the / 2 lowest and the / 2 highest intensity values of
( , ) in the neighborhood . Let ( , ) represent the remaining

-  pixels.
xy r

d d
g s t S g s t
mn d

• Useful with multiple types of noise, e.g. combination of salt and pepper
and Gaussian noise. 

• if d = mn -1 , reduces to median filter
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Repeated median filtering blurs
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Max filter removes some dark pixels
Min filter removes some light pixels
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Spatial Filtering: Adaptive Filters (1)

Adaptive filters

The behavior changes based on statistical characteristics 
of the image inside the filter region defined by the mхn 
rectangular window.

The performance is superior to that of the filters 
discussed
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Adaptive Filters:
Adaptive, Local Noise Reduction Filters (1) 

2

: local region
The response of the filter at the center point (x,y) of 
is based on four quantities:
(a)  ( , ),  the value of the noisy image at ( , );
(b)  , the variance of the noise corrupti

xy

xy

S
S

g x y x y

hs

2

ng ( , ) 
       to form ( , );
(c)  , the local mean of the pixels in ;

(d)  ,  the local variance of the pixels in .
L xy

L xy

f x y
g x y

m S

Ss



10/15/22 41

Adaptive Filters:
Adaptive, Local Noise Reduction Filters (2) 

2

2

The behavior of the filter:
(a)  if  is zero, the filter should return simply the value
       of ( , ). 
(b)  if the local variance is high relative to , the filter 
       should return a value cl

g x y
h

h

s

s

ose to ( , );
(c)  if the two variances are equal, the filter returns the 
      arithmetic mean value of the pixels in .xy

g x y

S
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Adaptive Filters:
Adaptive, Local Noise Reduction Filters (3) 

[ ]
2

2

An adaptive expression for obtaining ( , ) 
based on the assumptions:

        ( , ) ( , ) ( , ) L
L

f x y

f x y g x y g x y mhs
s

= - -
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Shortcomings of Median Filtering

►Works only if spatial density of impulse 
noise is not large ( Pa and Pb smaller than 
0.2)

► Adaptive median filter works for large Pa 
and Pb
§ Preserves details while smoothing non-impulse 

noise
§ Median filter cannot do this.
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Adaptive Filters:
Adaptive Median Filters (1) 

min

max

med

max

The notation:
     minimum intensity value in  
     maximum intensity value in 
     median intensity value in 
      intensity value at coordinates ( , )
     maximum all

xy

xy

xy

xy

z S
z S
z S
z x y
S

=

=

=

=

= owed size of xyS



Intuition behind adaptive median 
filter

►Keep increasing window size until z_med is 
not an impulse, i.e.
z_min < z_med < z_max

►When this happens check z_xy
§ If z_xy is not an impulse output z_xy
§ If z_xy is an impulse output z_med
(since z_med is guaranteed not to be an impulse)
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Adaptive Filters:
Adaptive Median Filters (2) 

med min med max

max

The adaptive median-filtering works in two stages:
Stage A:
     A1 =  ;     A2 =  
     if A1>0 and A2<0,  go to stage B
     Else increase the window size
     if window size  , re

z z z z

S

- -

£ med

min max

med

peat stage A;  Else output 
Stage B:
     B1 =  ;     B2 =  
     if B1>0 and B2<0,  output ;  Else  output 
    

xy xy

xy

z

z z z z
z z

- -
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Adaptive Filters:
Adaptive Median Filters (2) 

med min med max

max

The adaptive median-filtering works in two stages:
Stage A:
     A1 =  ;     A2 =  
     if A1>0 and A2<0,  go to stage B
     Else increase the window size
     if window size  , re

z z z z

S

- -

£ med

min max

med

peat stage A;  Else output 
Stage B:
     B1 =  ;     B2 =  
     if B1>0 and B2<0,  output ;  Else  output 
    

xy xy

xy

z

z z z z
z z

- -

The median filter 
output is an impulse 

or not

The processed point 
is an impulse or not
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Example:
Adaptive Median Filters
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Periodic Noise Reduction by Frequency 
Domain Filtering

The basic idea 

Periodic noise appears as concentrated bursts of energy 
in the Fourier transform, at locations corresponding to 
the frequencies of the periodic interference 

Approach

A selective filter is used to isolate the noise
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Perspective Plots of Bandreject Filters
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A Butterworth bandreject 
filter of order 4, with the 
appropriate radius and 

width to enclose 
completely the noise 

impulses
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Perspective Plots of Notch Filters
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Several interference components are present, the methods discussed 
in the preceding sections are not always acceptable because they 
remove much image information 
The components tend to have broad skirts that carry information 
about the interference pattern and the skirts are not always easily 
detectable.
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Optimum Notch Filtering

It minimizes local variances of the restored estimated 

Procedure for restoration tasks in multiple periodic 
interference

Isolate the principal contributions of the interference 
pattern 

Subtract a variable, weighted portion of the pattern 
from the corrupted image

( , )f x y
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Optimum Notch Filtering: Step 1

Extract the principal frequency components of 
the interference pattern

Place a notch pass filter at the location of each spike. 

( , ) ( , ) ( , )NPN u v H u v G u v=

{ }1( , ) ( , ) ( , )NPx y H u v G u vh -= Á
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Optimum Notch Filtering: Step 2 (1)

Filtering procedure usually yields only an approximation of the
true pattern. The effect of components not present in the estimate
of ( , ) can be minimized instead by subtracting from ( , ) 
a weighte

x y g x yh
d portion of ( , ) to obtain an estimate of ( , ):

      ( , ) ( , ) ( , ) ( , )

x y f x y

f x y g x y w x y x y

h

h= -

One approach is to select ( , ) so that the variance of the estimate ( , ) 
is minimized over a specified neighborhood of every point ( , ).

w x y f x y
x y
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Optimum Notch Filtering: Step 2 (2)

2
2

The local variance of  ( , ):

1( , )  ( , )  ( , )
(2 1)(2 1)

a b

s a t b

f x y

x y f x s y t f x y
a b

s
=- =-

é ù= + + -ê úë û+ + å å
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Optimum Notch Filtering: Step (3)

[ ]

2
2

2

The local variance of  ( , ):

1( , )  ( , )  ( , )
(2 1)(2 1)

 ( , ) ( , ) ( , )1
(2 1)(2 1)  ( , ) ( , ) ( , )

 (1
(2 1)(2 1)

a b

s a t b

a b

s a t b

f x y

x y f x s y t f x y
a b

g x s y t w x s y t x s y s

a b g x y w x y x y

g

a b

s

h

h

=- =-

=- =-

é ù= + + -ê úë û+ +

ì ü+ + - + + + +ï ï= í ýé ù+ + - -ï ïë ûî þ

=
+ +

å å

å å

[ ] 2
, ) ( , ) ( , )

 ( , ) ( , ) ( , )

a b

s a t b

x s y t w x y x s y s

g x y w x y x y

h

h=- =-

ì ü+ + - + +ï ï
í ýé ù- -ï ïë ûî þ

å å

Assume that w(x,y) remains 
essentially constant over the 

neighborhood gives the 
approximation

w(x+s, y+t) = w(x,y)
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Optimum Notch Filtering: Step (4)

[ ] 2

2

The local variance of  ( , ):

 ( , ) ( , ) ( , )1( , )
(2 1)(2 1)  ( , ) ( , ) ( , )

a b

s a t b

f x y

g x s y t w x y x s y s
x y

a b g x y w x y x y

h
s

h=- =-

ì ü+ + - + +ï ï= í ýé ù+ + - -ï ïë ûî þ
å å

2
2

22

( , )To minimize ( , ) ,   0
( , )

for ( , ), the result is

( , ) ( , ) ( , ) ( , )         ( , )
( , ) ( , )

x yx y
w x y

w x y

g x y x y g x y x yw x y
x y x y

ss

h h

h h

¶
=

¶

-
=

-
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Optimum Notch Filtering: Example
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Optimum Notch Filtering: Example
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Optimum Notch Filtering: Example
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Optimum Notch Filtering: Example
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Linear, Position-Invariant Degradations

[ ]( , ) ( , ) ( , )g x y H f x y x yh= +
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Linear, Position-Invariant Degradations

[ ]

[ ]

An operator having the input-output relationship
( , ) ( , )  is said to be position invariant

if
       ( , ) ( , )
for any ( , ) and any  and .

g x y H f x y

H f x y g x y
f x y

a b a b
a b

=

- - = - -

[ ] [ ] [ ]1 2 1 2

1 2

 is linear
( , ) ( , ) ( , ) ( , )

 and  are any two input images.

H
H af x y bf x y aH f x y bH f x y
f f

+ = +
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Linear, Position-Invariant Degradations
( , ) ( , ) ( , )f x y f x y d da b d a b a b

¥ ¥

-¥ -¥
= - -ò ò

[ ]

[ ]

[ ]

Assume for a moment that ( , ) 0
if  is a linear operator,

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

x y
H

g x y H f x y

H f x y d d

H f x y d d

f H x y d d

h

a b d a b a b

a b d a b a b

a b d a b a b

¥ ¥

-¥ -¥

¥ ¥

-¥ -¥

¥ ¥

-¥ -¥

=

=

é ù= - -ê úë û

= - -

= - -

ò ò

ò ò
ò ò Impulse 

response

Superposition (or 
Fredholm) 

integral of the 
first kind
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Linear, Position-Invariant Degradations

[ ]
[ ]

[ ]

Assume for a moment that ( , ) 0
if  is a linear operator and position invariant,

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

x y
H

H x y h x y

g x y H f x y

f H x y d d

f h x y d d

h

d a b a b

a b d a b a b

a b a b a b

¥ ¥

-¥ -¥

¥ ¥

-¥ -¥

=

- - = - -

=

= - -

= - -

ò ò
ò ò

Convolution 
integral in 2-D
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Linear, Position-Invariant Degradations

In the presence of additive noise,
if  is a linear operator and position invariant,

( , ) ( , ) ( , ) ( , )

( , )    ( , ) ( , )

( , ) ( , ) ( , ) ( , )

H

g x y f h x y d d x y

h x y f x y x y

G u v H u v F u v N u v

a b a b a b h

h

¥ ¥

-¥ -¥
= - - +

= +

= +

ò ò
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Estimating the Degradation Function

► Three principal ways to estimate the degradation function

1. Observation

2. Experimentation

3. Mathematical Modeling
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Mathematical Modeling (1)

► Environmental conditions cause degradation

A model about atmospheric turbulence 
2 2 5/6( )           ( , )

:  a constant that depends on
     the nature of the turbulence

k u vH u v e
k

- +=
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Mathematical Modeling (2)

► Derive a mathematical model from basic principles  

E.g., An image blurred by uniform linear motion between 
the image and the sensor during image acquisition
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Mathematical Modeling (3)

0 0

Suppose that an image ( , ) undergoes planar motion, 
( ) and ( ) are the time-varying components of motion 

in the - and -directions, respectively.
The optical imaging process is perfect. T is th

f x y
x t y t

x y

[ ]0 00

e duration
of the exposure. The blurred image ( , ) 

            ( , ) ( ), ( )
T

g x y

g x y f x x t y y t dt= - -ò
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Mathematical Modeling (4)

[ ]

[ ]

[ ]

0 00

2 ( )

2 ( )
0 00

2 ( )
0 00

( , ) ( ), ( )

( , ) ( , )

           ( ), ( )

           ( ), ( )

         

T

j ux vy

T j ux vy

T j ux vy

g x y f x x t y y t dt

G u v g x y e dxdy

f x x t y y t dt e dxdy

f x x t y y t e dxdy dt

p

p

p

¥ ¥ - +

-¥ -¥

¥ ¥ - +

-¥ -¥

¥ ¥ - +

-¥ -¥

= - -

=

é ù= - -ê úë û
é ù= - -ê úë û

ò
ò ò

ò ò ò

ò ò ò
[ ]

[ ]

0 0

0 0

2 ( ) ( )

0

2 ( ) ( )

0

  ( , )

           ( , )

T j ux t vy t

T j ux t vy t

F u v e dt

F u v e dt

p

p

- +

- +

=

=

ò
ò
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Mathematical Modeling (4)

[ ]0 0

0

2 ( ) ( )

0

0

2 ( )

0

                 ( , )

Suppose that the image undergoes uniform linear motion 
in the -direction only, at a rate given by ( ) / .

                  ( , )

  

T j ux t vy t

T j ux t

H u v e dt

x x t at T

H u v e dt

p

p

- +

-

=

=

=

ò

ò
2 /

0
                           

                             sin( )

T j uat T

j ua

e dt

T ua e
ua

p

pp
p

-

-

=

=

ò



10/15/22 78

Mathematical Modeling (5)

[ ]0 0

0 0

2 ( ) ( )

0

Suppose that the image undergoes uniform linear motion 
in the -direction and -direction, at a rate given by 

( ) /  and ( ) /

           ( , )

                      

T j ux t vy t

x y
x t at T y t bt T

H u v e dt

e

p- +

= =

=

=

ò

[ ]

2 [ ] /

0

( )                      sin ( )
( )

T j ua vb t T

j ua vb

dt

T ua vb e
ua vb

p

pp
p

- +

- += +
+

ò
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Inverse Filtering

An estimate of the transform of the original image
( , )                    ( , )
( , )

G u vF u v
H u v

=

( , ) ( , ) ( , )( , )
( , )
( , )           ( , )
( , )

F u v H u v N u vF u v
H u v
N u vF u v
H u v

+
=

= +
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Inverse Filtering

( , )( , ) ( , )
( , )

N u vF u v F u v
H u v

= +

1. We can't exactly recover the undegraded image
    because ( , ) is not known.
2. If the degradation function has zero or very 
   small values, then the ratio ( , ) / ( , ) could

   easily dominate th

N u v

N u v H u v

e estimate ( , ).F u v
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Inverse Filtering

( )2/2 (

EXAMPLE

The image in Fig. 5.25(b) was inverse filtered using the 
exact inverse of the degradation function that generated
that image. That is, the degradation function is

             ( , )
k u M v

H u v e
- - +

=
5/62/2)

,  0.0025
N

k
é ù-ê úë û =



10/15/22 84

Inverse Filtering

( )2/2 (

EXAMPLE

The image in Fig. 5.25(b) was inverse filtered using the 
exact inverse of the degradation function that generated
that image. That is, the degradation function is

             ( , )
k u M v

H u v e
- - +

=
5/62/2)

            0.0025,  480.

N

k M N

é ù-ê úë û

= = =

One approach is to limit the filter frequencies to values near the origin.
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A Butterworth 
lowpass 
function of 
order 10

The poor performance 
of direct inverse 

filtering in general
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Minimum Mean Square Error (Wiener) 
Filtering

Ø N. Wiener (1942)

Ø Objective
Find an estimate of the uncorrupted image such that the mean 
square error between them is minimized

{ }2 2( )e E f f= -
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Minimum Mean Square Error (Wiener) 
Filtering

2

2

The minimum of the error function is given in the frequency domain
by the expression

*( , ) ( , )
            ( , ) ( , )

( , ) | ( , ) | ( , )

*( , )                      
| ( , ) | ( ,

f

f

H u v S u v
F u v G u v

S u v H u v S u v

H u v
H u v S u v

h

h

é ù
= ê ú

+ê úë û

=
+

2

2

( , )
) / ( , )

1 | ( , ) |                      ( , )
( , ) | ( , ) | ( , ) / ( , )

f

f

G u v
S u v

H u v G u v
H u v H u v S u v S u vh

é ù
ê ú
ê úë û
é ù

= ê ú
+ê úë û
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Minimum Mean Square Error (Wiener) 
Filtering

2

2

2

2

1 | ( , ) | ( , ) ( , )
( , ) | ( , ) | ( , ) / ( , )

( , ) : degradation function
*( , ): complex conjugate of ( , )

| ( , ) | *( , ) ( , )
( , ) | ( , ) | power spectrum of the noise

( ,

f

f

H u vF u v G u v
H u v H u v S u v S u v

H u v
H u v H u v
H u v H u v H u v
S u v N u v

S u v

h

h

é ù
= ê ú

+ê úë û

=

= =
2) | ( , ) | power spectrum of the undegraded imageF u v= =



10/15/22 90

Minimum Mean Square Error (Wiener) 
Filtering

2

2
1 | ( , ) | ( , ) ( , )

( , ) | ( , ) |

 is a specified constant. Generally, the value of K
is chosen interactively to yield the best visual results.

H u vF u v G u v
H u v H u v K

K

é ù
= ê ú+ë û
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Minimum Mean Square Error (Wiener) 
Filtering
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Left: 
degradated 
image

Middle: 
inverse 
filtering

Right: 
Wiener 
filtering
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Some Measures (1)

1 1
2

0 0
1 1

2

0 0

 Singal-to-Noise Ratio (SNR)

| ( , ) |
                  

| ( , ) |

This ratio gives a measure of the level of information
bearing singal power to the level of noise power.

M N

u v
M N

u v

F u v
SNR

N u v

- -

= =
- -

= =

=
åå

åå



10/15/22 94

Some Measures (2)

21 1

0 0

1 1
2

0 0
1 1

2

0 0

 Mean Square Error (MSE)

1          MSE= ( , ) ( , )

Root-Mean-Sqaure-Error (RMSE)

( , )
          RMSE

| ( , ) ( , ) |

M N

x y

M N

u v
M N

u v

f x y f x y
MN

f x y

f x y f x y

- -

= =

- -

= =
- -

= =

é ù-ë û

=
-

åå

åå

åå
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Constrained Least Squares
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Constrained Least Squares Filtering
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Constrained Least Squares Filtering

2 2
*( , )( , ) ( , )

| ( , ) | | ( , ) |

( , ) is the Fourier transform of the function
0 1 0

        ( , ) 1 4 1
0 1 0

 is a parameter

H u vF u v G u v
H u v P u v

P u v

p x y

g

g

é ù
= ê ú+ë û

-é ù
ê ú= - -ê ú
ê ú-ë û
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Examples
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Geometric Mean Filter

1
2

2 2

*( , ) | ( , ) | ( , ) ( , )
| ( , ) | | ( , ) | ( , ) / ( , )f

H u v H u vF u v G u v
H u v H u v S u v S u v

aa

hb

-
é ùé ù

= ê úê ú é ù+ê úë û ë ûë û

1:    inverse filter
=0:     parametric Wiener filter
=1/2:  geometric mean filter

a
a
a

=
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Image Reconstruction from Projection

► Reconstruct an image from a series of projections 
X-ray computed tomography (CT)

“Computed tomography is a medical imaging method employing 
tomography where digital geometry processing is used to generate a 
three-dimensional image of the internals of an object from a large 
series of two-dimensional X-ray images taken around a single axis of 
rotation.”

http://en.wikipedia.org/wiki/Computed_tomography
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Backprojection

“ In computed tomography or other imaging techniques 
requiring reconstruction from multiple projections, an 
algorithm for calculating the contribution of each voxel of 
the structure to the measured ray data, to generate an 
image; the oldest and simplest method of image 
reconstruction. “

http://www.medilexicon.com/medicaldictionary.php?t=9165
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Image Reconstruction: Introduction
Soft, uniform 

tissue

Uniform with higher 
absorption Tumor

Intensity is 
proportional to 

absorption
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Image Reconstruction: Introduction
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Other CTs

► Electron beam CT (Fifth-generation CT)
Electron beam tomography (EBCT) was introduced in the early 1980s, by 
medical physicist Andrew Castagnini, as a method of improving the temporal 
resolution of CT scanners.
High cost of EBCT equipment, and poor flexibility

► Helical (or spiral) cone beam computed tomography (sixth-generation) 
A type of three dimensional computed tomography (CT) in which the source 
(usually of x-rays) describes a helical trajectory relative to the object while a 
two dimensional array of detectors measures the transmitted radiation on part 
of a cone of rays emitting from the source

http://en.wikipedia.org/wiki/Computed_tomography
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Other CTs

► Multislice CT (seventh-generation)

► The major benefit of multi-slice CT

Ø Significant increase in detail
Ø Utilizes X-ray tubes more economically
Ø Reducing cost and potentially reducing dosage
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Projections and the Radon Transform
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Projections and the Radon Transform

( , ) ( , ) ( cos sin )j k k k jg f x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
= + -ò ò
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Projections and the Radon Transform

{ } ( , ) ( , ) ( cos sin )f g f x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
Â = = + -ò ò

► Radon transform gives the projection (line integral) of 
f(x,y) along an arbitrary line in the xy-plane

{ }
1 1

0 0
( , ) ( , ) ( cos sin )

M N

x y
f g f x y x yr q d q q r

- -

= =

Â = = + -åå
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Example: Using the Radon transform to obtain 
the projection of a circular region

2 2 2          ( , )
0             otherwise
A x y r

f x y
ì + £

= í
î

► Assume that the circle is centered on the origin of the xy-plane. 
Because the object is circularly symmetric, its projections are the 
same for all angles, so we just check the projection for 0q =
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Example: Using the Radon transform to obtain 
the projection of a circular region

2 2

2 2

2 2

2 2

2 2

( , ) ( , ) ( cos sin )

         ( , ) ( )

         ( , )

         ( , )

         

2         | | r         
0                o

r

r

r
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g f x y x y dxdy
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f y dy
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A r

r

r

r

r

r q d q q r

d r

r

r

r r

¥ ¥

-¥ -¥
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-¥ -¥
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-¥

-

- -

-
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=

=

=

- £=
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ò

ò
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therwise

ìï
í
ïî
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2 22         | | r( )
0                otherwise
A rg r rr

ìï - £= í
ïî
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Sinogram: The Result of Radon Transform

► Sinogram: the 
result of Radon 
transform is 
displayed as an 
image with

and      as 
rectilinear 
coordinates

        r q



10/15/22 118

The Fourier-Slice Theorem

2

For a given value of , the 1-D Fourier transform 
of a projection with respect to  is

         ( , ) ( , ) jG w g e dpwr

q
r

q r q r
¥ -

-¥
= ò

2

2

2 ( cos sin )

( , ) ( , ) ( cos sin )
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            ( , )
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pw q q

w q d q q r r

d q q r r

¥ ¥ ¥ -

-¥ -¥ -¥

¥ ¥ ¥ -
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¥ ¥ - +
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The Fourier-Slice Theorem

[ ]

2 ( cos sin )

2 ( )

cos , sin

cos , sin

( , ) ( , )

            ( , )

            ( , )

            ( cos , sin )

j x y

j ux vy

u w v w

u w v w

G f x y e dxdy

f x y e dxdy

F u v

F w w

pw q q

p

q q

q q

w q

q q

¥ ¥ - +

-¥ -¥

¥ ¥ - +

-¥ -¥ = =
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=

é ù= ê úë û

=

=

ò ò

ò ò

2         ( , ) ( , ) jG w g e dpwrq r q r
¥ -

-¥
= ò

Fourier-slice theorem: The Fourier tansform of a projection is a slice of
the 2-D Fourier transform of the region from which the projection was 
obtained
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Illustration of the Fourier-slice theorem



Reconstruction methods 

1. Simple : - Nearest Neighbor (zero order interpolation)
- First order interpolation.

2. Radon inversión formula 
3. Iterative methods 



Transform reconstruction
Polar Sampling:  E.g.: 9 point DFT in each direction , 8 projections
The samples are equally spaced 

2W

1W

The goal is to find the FT values on the
cartesian grid given the values at the polar
coordinate system (red points) 
We can then apply one of the following 
interpolation methods:   

Zeroth order à Nearest Neighbor
First order à Weighed Sum of neighbor samples (Average)



Radon Inversion Formula
Recall that IDFT 2D of Fc(Ω1, Ω2) is:

1 1 2 2

1 2

1 2 1 2 1 22
1( , ) ( , )
4

j t j t
c cf t t F e e d d

p

+¥ +¥
W W

W =-¥ W =-¥

= W W W Wò ò
We can express this expression using polar coordinates: 
i.e.: (Ω1, Ω2)à (ω, θ).

q

w
2W

1W



Radon Inversion Formula
To accomplish this we need the jacobian:

( , ) ( , ) . . :

( , ) ( ( , ), ( , ))

( ) ( )
( ) ( )( , ) ( ) ( ) ( ) ( )
( ) ( )( , ) ( ) ( ) ( ) ( )
( ) ( )

si x g u v y y h u v i e

f x y dxdy f g u v h u v J dudv where

x x
u vx y x y y xJ
y yu v u v u v
u v

= =

=
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¶ ¶

òò òò



Radon Inversion Formula

Therefore fc(t1, t2) will be:

1 2( , ) cos ( , )
. . :

cos( , )
cos( , )

si g y h sen
i e

senx yJ
senu v

w q w q w q w q

q w q
w

q w q

W = = W = =

-¶
= = =
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1 2( cos )
1 2 2

0
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j t t sen
c cf t t F sen e d d

p
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p
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Formula for inversion of Radon
Then we have:

1 2( cos )
1 2 2

0

1( , ) ( cos , )
4

j t t sen
c cf t t F sen e d d

p
w q qw q w q w w q
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( )Pq w
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Formula de inversion de Radon
The second integral is an IDFT:

1 2( cos )
1 2 2

0

1( , ) ( )
4

j t t sen
cf t t P e d d

p
w q q

q w w w q
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+¥
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[ ]
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IDFT



Formula de inversion de Radon
This gives us:

1 2cos( )
t t t sen

I g tq q q= +
=

1 2( cos )I g t t senq q q= +

1 2 1 22
0

1( , ) ( cos )
4cf t t g t t sen d

p

q q q q
p

= +ò

Substituting in fc(t1, t2) we have:



Formula de inversion de Radon
Finally:

1 2 1 22
0

1( , ) ( cos )
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Radon Inversion Formula
Summary:

{ } ( )( ) ( , ) Pdg t p t IDFT d
dt t

q
q

tq w t
t

+¥

-¥

= Ä =
-ò

1- Find
2- Evaluate 

3- Substitute in fc(t1, t2) 
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Convolution Backprojection 
2t

1t

t
q
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Reconstruction Using Parallel-Beam Filtered 
Backprojections

2 ( )( , ) ( , ) j ux vyf x y F u v e dudvp¥ ¥ +
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Reconstruction Using Parallel-Beam Filtered 
Backprojections

2 ( cos sin )

0

2

0 cos sin

( , ) | | ( , )

           | | ( , )

j w x y

j w

x y

f x y w G w e dwd

w G w e dw d

p p q q
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r q q

q q

q q
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=

é ù= ê úë û

ò ò

ò òIt’s not 
integrable

Approach:

Window the ramp so it becomes zero outside of a defined frequency 
interval. That is, a window band-limits the ramp filter.
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Hamming / Hann Widow

2( 1)cos          0 ( 1)
( ) 1

0                              otherwise

wc c w M
h w M

pì + - £ £ -ï= -í
ïî

0.54,  the function is called the Hamming window
0.5, the function is called the Han window

c

c

=

=
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The Plot of Hamming Widow
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Filtered Backprojection

The complete, filtered backprojection (to obtain the 
reconstructed image f(x,y) ) is described as follows:

1. Compute the 1-D Fourier transform of each projection
2. Multiply each Fourier transform by the filter function |w| 

which has been multiplied by a suitable (e.g., Hamming) 
window

3. Obtain the inverse 1-D Fourier transform of each 
resulting filtered  transform

4. Integrate (sum) all the 1-D inverse transforms from step 
3
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Examples: Filtered Backprojection
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Examples: Filtered Backprojection
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Implementation of Filtered Backprojection in 
Spatial Domain

► Fourier transform of the product of two frequency domain 
functions is equal to the convolution of the spatial 
representation

► Let s(p) denote the inverse Fourier transform of |w|
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