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Image Restoration

Image restoration: recover an image that has been

degraded by using a prior knowledge of the degradation
phenomenon.

Model the degradation and applying the inverse process in
order to recover the original image.
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A Model of Image Degradation/Restoration

Process
FIGURE 5.1
A model of the Degradation 8(x.y) Restorati .
image flx,yy=> function Tﬁlﬁl;;:l-}n n f(x.y)
degradation/ H o
restoration _
process. IT;"’;}

LIACED.
DEGRADATION RESTORATION
» Degradation

= Degradation function H
= Additive noise 77(x. )
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A Model of Image Degradation/Restoration

Process
FIGURE 5.1
A model of the Degradation 8(x.y) _ n
image fle.yyc=> function RT?IIITZ?I'I'H 1 flx.y)
degradation/ H Hter(s)
restoration _
process. Noise

n(x.y)

RESTORATION

DEGRADATION

If H is a linear, position-invariant process, then

the degraded 1image 1s given 1n the spatial domain by
g(x,y) = h(x,y)%f (x,y) +n(x, y)
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A Model of Image Degradation/Restoration
Process

The model of the degraded image 1s given in

the frequency domain by

G(u,v)=Hw,v)F(u,v)+ N(u,v)
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Noise Sources

The principal sources of noise in digital images arise during
iImage acquisition and/or transmission

Image acquisition
e.g., light levels, sensor temperature, etc.

Transmission

e.g., lightning or other atmospheric disturbance in wireless
network
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Noise Models (1)

White noise
= The Fourier spectrum of noise is constant

With the exception of spatially periodic noise, we assume
= Noise is independent of spatial coordinates
= Noise is uncorrelated with respect to the image itself
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Noise Models (2)

Gaussian noise

Electronic circuit noise, sensor noise due to poor illumination and/or
high temperature

Rayleigh noise
Range imaging
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Noise Models (3)

Erlang (gamma) noise: Laser imaging
Exponential noise: Laser imaging

Uniform noise: Least descriptive; Basis for numerous random
number generators

Impulse noise: quick transients,
such as faulty switching

Immpulse Noise
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Gaussian Noise (1)

The PDF of Gaussian random variable, z, 1s given by

1 —(z-2)*/20?

p(Z) — \/%Ge

where, z represents intensity

z is the mean (average) value of z

o 18 the standard deviation

10



Gaussian Noise (2)

The PDF of Gaussian random variable, z, 1s given by

1 —(z-2)*/20?

p(Z) — \/%Ge

= 70% of its values will be in the range

[(u—0),(u+0)]

= 95% of its values will be in the range

[(u—20),(p+20)]

10/15/22

11



Rayleigh Noise

The PDF of Rayleigh noise is given by

(2) %(z—a)e_(z_“)z/b forz>a
p(z) =1
0 forz<a

The mean and variance of this density are given by
z=a+7b/4

1 — b(4—r)
4

O
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Erlang (Gamma) Noise

The PDF of Erlang noise is given by

(b _b-1

el e - forz>0
p(z)=< (b-1)!

0 forz<a

The mean and variance of this density are given by
z=b/a

o’ =b/a’

10/15/22
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Exponential Noise

The PDF of exponential noise 1s given by

(2) ae “ forz>0
Z)=
o 0 forz<a

The mean and variance of this density are given by
z=1/a

o’ =1/a’

10/15/22
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Uniform Noise

The PDF of uniform noise 1s given by

-

|
p(z2)=1b-a
0

fora<z<b

otherwise

The mean and variance of this density are given by
z=(a+b)/2
o’ =(Mb-a)’ /12

10/15/22
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Impulse (Salt-and-Pepper) Noise

The PDF of (bipolar) impulse noise 1s given by

P forz=a
p(z)=1P forz=>0
0 otherwise

\

if b > a, gray-level b will appear as a light dot,

while level a will appear like a dark dot.

If either P, or P, 1s zero, the impulse noise 1s called

unipolar

10/15/22
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p(z)

1
V2mo

0.607
V2mo

p(z)

Akl (e
de f

Gaussian

Exponential

p(z)

2
0.607 \/;

Rayleigh

p(z)

Gamma

FIGURE 5.2 Some important probability density functions.
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Examples of Noise: Original Image

FIGURE 5.3 Test
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2.
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Examples of Noise: Noisy Images(1)

Gaussian Rayleigh Gamma

al bl

de f
10/15/22 ‘ ' . . ‘ ‘ ' 19
FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image

in Fig. 5.3



Examples of Noise: Noisy Images(2)

Exponential Uniform Salt & Pepper

ghi
j k1

10/15/22 _ : , : : : 20
FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and

pepper noise to the image in Fig. 5.3.



Periodic Noise

Periodic noise in an image arises typically from electrical or
electromechanical interference during image acquisition.

It is a type of spatially dependent noise

Periodic noise can be reduced significantly via frequency
domain filtering
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An Example of Periodic

olse

a
b

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
one sine wave).
(Original image
courtesy of

NASA.)
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Estimation of Noise Parameters (1)

The shape of the histogram identifies the closest PDF match

abc

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the
Rayleigh, and (c) the uniform noisy images in Fig. 5.4.
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Estimation of Noise Parameters (2)

Consider a subimage denoted by S, and let p (z,),i=0, 1, ..., L-1,
denote the probability estimates of the intensities of the pixels in S.

The mean and variance of the pixels in S:
R |
zZ= Z Zips (Zi)
i=0

and Z(Zz —Z) p.(z)

I=

10/15/22 24
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Restoration in the Presence of Noise Only
— Spatial Filtering

Noise model without degradation

g(x,y)=f(x,y)+n(x,y)
and

Gu,v)=F(u,v)+ N(u,v)

25
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Spatial Filtering: Mean Filters (1)

Let S, represent the set of coordinates in a rectangle

subimage window of size m x n, centered at (x, y).

Arithmetic mean filter

o) =— 3 gs.0)

Mn (spes,,

Smooths local variation in an image;
Noise is reduced as a result of blurring

26
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Spatial Filtering: Mean Filters (2)

Geometric mean filter

f,n=| ] g0

_(s,t)eSxy

Generally, a geometric mean filter achieves smoothing
comparable to the arithmetic mean filter, but it tends to
lose less image detail in the process

27



Spatial Filtering: Mean Filters (3)

Harmonic mean filter

mn

f(x,py)= 1
2

(s.0)eS,, 8 (s,7)

It works well for salt noise, but fails for pepper noise.
It does well also with other types of noise like Gaussian
noise.

10/15/22
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Spatial Filtering: Mean Filters (4)

Contraharmonic mean filter

> g(s,0)°"

(s,0)S,,

> g(s,0)°

(s,0)ES,,

flx,py)=

Q is the order of the filter.

It is well suited for reducing the effects of salt-and-

pepper noise. Q>0 for pepper noise and Q<0 for salt
noise.

29
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FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (c¢) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

Spatial Filtering: Example (1)
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FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3 X 3 contra-
harmonic filter of
order:1:5.,

(d) Result of
filtering (b) with
Q= -15.



ab
FIGURE 5.9

Results of select-
ing the wrong sign
in contraharmonic
filtering.

(a) Result of
filtering

Fig. 5.8(a) with a
contraharmonic
filter of size 3 X 3
and Q = —1.5.
(b) Result of
filtering 5.8(b)
with Q@ = 1.5.

10/15/22

Spatial Filtering: Example (3)

n % AREE
Ry SRR ISR
o A S . = RIS
ar i : 1 : 5 ‘;.-‘.L.II';

g2ptaded ¥ siamieyduls

For contraharmonic filter, MUST know weather noise is
Salt or pepper. -



Spatial Filtering: Order-Statistic Filters (1)

Median filter
f(x,y) = median{g(s,t)}

(s,0)€S,,

Effective in the presence of both unipolar and bipolar noise

Max filter
f(x,y) = max {g(s,1)}
(s,0)€S,,
Reduces pepper noise; finds brightest point in an image

Min filter
f(x,y)= min {g(s,)}

(s,0)€S,,

onse,  REMuces salt noise; finds darkest point in an image

33



Spatial Filtering: Order-Statistic Filters (2)

Midpoint filter

f(x,y)=— {max {g(s,f)} + min {g(s,t)}}

(s,t)eS (s,0)€S,,

Combines order statistics and averaging
Works best for randomly distributed noise e.g. Gaussian or unfiorm

10/15/22
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Spatial Filtering: Order-Statistic Filters (3)

Alpha-trimmed mean filter

f)=—— 3 g (s.0)]

mn—d (s,)€S,,

We delete the d / 2 lowest and the d / 2 highest intensity values of
g(s,?) in the neighborhood S . Let g, (s,7) represent the remaining
mn -d pixels.

« Useful with multiple types of noise, e.g. combination of salt and pepper

and Gaussian noise.
if d = mn -1, reduces to median filter

10/15/22
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FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P, =P, =0.1.
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.

Repeated median filtering blurs
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FIGURE 5.11

(a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 X 3.(b) Result
of filtering 5.8(b)
with a min filter
of the same size.

Max filter removes some dark pixels

10/15/22 . . = -
Min filter removes some light pixels
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FIGURE 5.12
(a) Image

- corrupted
- by additive

uniform noise.
(b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
Image (b) filtered
withad X 5;

(c) arithmetic
mean filter;

(d) geometric
mean filter;

(e) median filter;
and (f) alpha-
trimmed mean
filter with d = 5.

38



Spatial Filtering: Adaptive Filters (1)

Adaptive filters

The behavior changes based on statistical characteristics
of the image inside the filter region defined by the mxn
rectangular window.

The performance is superior to that of the filters
discussed

10/15/22 39



Adaptive Filters:

Adaptive, Local Noise Reduction Filters (1)

10/15/22

S, local region
The response of the filter at the center point (x,y) ot S,

1s based on four quantities:

(a) g(x,y), the value of the noisy image at (x, y);
(b) O'; , the variance of the noise corrupting 1 (x, y)
to form g(x, y);

(c) m,, the local mean of the pixels in S_;

(d) o, the local variance of the pixels in A

40



Adaptive Filters:
Adaptive, Local Noise Reduction Filters (2)

The behavior of the filter:

(a) 1f cyj 1s zero, the filter should return simply the value
of g(x, ).

(b) 1if the local variance is high relative to o*j , the filter

should return a value close to g(x, y);
(c) 1f the two variances are equal, the filter returns the

arithmetic mean value of the pixels in § .

10/15/22 41



Adaptive Filters:
Adaptive, Local Noise Reduction Filters (3)

An adaptive expression for obtaining f(x, y)

based on the assumptions:

2
7

f(x,y)=g(x,y) - ?[g(x, y)—m,]

10/15/22

42



aB
clld

FIGURE 5.13

(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000.

(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean
filtering.

(d) Result of
adaptive noise
reduction
filtering. All filters
were of size

7 X 17.

10/15/22
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Shortcomings of Median Filtering

Works only if spatial density of impulse
noise is not large ( Pa and Pb smaller than
0.2)

Adaptive median filter works for large Pa
and Pb

= Preserves details while smoothing non-impulse
noise

= Median filter cannot do this.

10/15/22
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Adaptive Filters:
Adaptive Median Filters (1)

The notation:

Zmin = MInimum intensity value in § |

mi

Zmax = Maximum intensity value in §_

max

Zmea = Median intensity value n S|

m

z,, = Intensity value at coordinates (x, y)

Smx = Maximum allowed size of § |

max

45



Intuition behind adaptive median
filter

Keep increasing window size until z_med is
not an impulse, i.e.

Z min < z med < z_ max

When this happens check z_xy

= If z_xy is not an impulse output z_xy
= If z_xy is an impulse output z_med
(since z_med is guaranteed not to be an impulse)

10/15/22 46



Adaptive Filters:
Adaptive Median Filters (2)

The adaptive median-filtering works 1n two stages:
Stage A:

Al=z ,—z .; A2=z ,—z

if A1>0 and A2<0, go to stage B

Else increase the window size

if window size < §__,
Stage B:

Bl = Zy — Zonin B2 = o ) il

if BI>0 and B2<0, outputz_; Else outputz

10/15/22

repeat stage A; Else output z__,

47



Adaptive Filters:
Adaptive Median Filters (2)

The adaptive median-filtering works 1n two stages:

Stage A: The median filter
Al=z ,—z . ; A2=z output is an impulse
if A1>0 and A2<0, go to stage B\ DIENG}

Else increase the window size

if window size < §__ , repeat stage A; Else output z_

RIEED 54 The processed point
Bl=z, -z, B2=:z is an impulse or not

if B1>0 and B2<0, output zZ, ; Else outputz_,

10/15/22 48



Example:
Adaptive Median Filters

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (¢) Result of adaptive median filtering with S, = 7.
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Periodic Noise Reduction by Frequency
Domain Filtering

The basic idea

Periodic noise appears as concentrated bursts of energy
in the Fourier transform, at locations corresponding to
the frequencies of the periodic interference

Approach

A selective filter is used to isolate the noise

50



Perspective Plots of Bandreject Filters

abc

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.
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FIGURE 5.16
(a) Image
corrupted by
sinusoidal noise.

(b) Spectrum of (a).

(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

10/15/22

A Butterworth bandreject
filter of order 4, with the
appropriate radius and
width to enclose
completely the noise
impulses




Perspective Plots of Notch Filters

a
b c

FIGURE 5.18
Perspective plots
of (a) ideal,

(b) Butterworth
(of order 2), and
(c) Gaussian
notch (reject)
filters.
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C
=[]
FIGURE 5.19
(a) Satellite image of
Florida and the Gulf of
Mexico showing
horizontal scan lines.
(b) Spectrum. (¢) Notch
pass filter superimposed
on (b). (d) Spatial noise
pattern. (e) Result of
notch reject filtering.
(Original image courtesy
of NOAA.)
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FIGURE 5.20

(a) Image of the
Martian terrain
taken by Mariner 6.
(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)

Several interference components are present, the methods discussed
in the preceding sections are not always acceptable because they
remove much image information

The components tend to have broad skirts that carry information
about the interference pattern and the skirts are not always easily
detectable.
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Optimum Notch Filtering

It minimizes local variances of the restored estimated

f(x,y)

Procedure for restoration tasks in multiple periodic
interference

Isolate the principal contributions of the interference
pattern

Subtract a variable, weighted portion of the pattern
from the corrupted image

10/15/22
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Optimum Notch Filtering: Step 1

Extract the principal frequency components of
the interference pattern

Place a notch pass filter at the location of each spike.

Nu,v)=H,,(u,v)G(u,v)

7(x,3) =37 {Hyp(u,v)G(u, )}

10/15/22
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Optimum Notch Filtering: Step 2 (1)

Filtering procedure usually yields only an approximation of the
true pattern. The effect of components not present in the estimate
of 77(x, y) can be minimized instead by subtracting from g(x, y)

a weighted portion of 77(x, y) to obtain an estimate of f (x, y):

f(x,y)=g(x,y)—wx, y)n(x,y)

One approach 1s to select w(x, y) so that the variance of the estimate f(x, y)

1s minimized over a specified neighborhood of every point (x, y).
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Optimum Notch Filtering: Step 2 (2)

The local variance of f(x, y):

1

o) = Db D) A

S 3| fertsyen- 1 n]

10/15/22
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Assume that w(Xx,y) remains
essentially constant over the
neighborhood gives the
approximation
W(x+s, y+t) = w(X,y)

1

o’ (x,y)

10/15/22

T 2a+1)2b+1) -

=—a.

“h Filtering: Step (3)

)

a
—

2

S rrsyen- f@n]
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Optimum Notch Filtering: Step (4)

The local variance of f(x, y):

, g(x+s y+1)—w(x, y)n(x+s, y+s)]
o) (X,J/) (2a+1)(2b—|—1) thb —|: (X,y)—W(xa)’)U(xay)]

10/15/22
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Optimum Notch Filtering: Example

ab

FIGURE 5.20

(a) Image of the
Martian terrain
taken by Mariner 6.
(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)
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Optimum Notch Filtering: Example

-+ : .

FIGURE 5.21
Fourier spectrum
(without shifting)
of the image
shown in Fig.
5.20(a).
(Courtesy of
NASA.)

63



Optimum Notch Filtering: Example
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Optimum Notch Filtering: Example

FIGURE 5.23

(Courtesy of
NASA.)

Processed image.
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Linear, Position-Invariant Degradations

FIGURE 5.1

A model of the Degradation 8(*.) Restorati )
image flx.yy—=> function T;’]l(;]]f;;]”" flx.y)
degradation/ H "
restoration y
process. Noise

n(x.y)

DEGRADATION RESTORATION
g(x,y)=H[ f(x,y)|+n(x,y)

10/15/22
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Linear, Position-Invariant Degradations

H 1s linear

H [af,(x, ) +bf,(x, )] = aH | f(x, )|+ BH [ f,(x, )]

/, and f, are any two input images.

An operator having the input-output relationship
g(x,y)=H| f(x,)] is said to be position invariant
if

H|f(x-a,y-p)|=gx-a,y-pB)
for any f(x, y) and any « and /.

67



Linear, Position-Invariant Degradations

faen = | fla.psx-a.y-pdadp
Assume for a moment that 77(x, y) =0

if A 1s a linear operator,

tion (or
)Im)
of the

10/15/22
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Linear, Position-Invariant Degradations

Assume for a moment that 77(x, y) =0

if H 1is a linear operator and position invariant,
H[5(x~a.y= )] =h(x—a.y - )

g(x,y)=H[f(x, )]

- jj:o Ji H @) [5(x Ay ,B)]dad,ﬁ ( Convolution }

integral in 2-D

10/15/22 69
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Linear, Position-Invariant Degradations

In the presence of additive noise,

if H 1is a linear operator and position invariant,

g, )=| [ fla,Ph(x—a,y-p)dadf+n(x,y)
= h(x, y) % f(x,y)+n(x, )

G(u,v)=Hu,v)F(u,v)+N(u,v)

70



Estimating the Degradation Function

Three principal ways to estimate the degradation function

1. Observation
2. Experimentation

3. Mathematical Modeling

10/15/22 71



Mathematical Modeling (1)

Environmental conditions cause degradation

A model about atmospherir fiirhiilenca

H(u, v) _ e—k(u2+v2 )5/6

k : a constant that depends on

i \D(u,v))|

the nature of the turbulence , _

S =

Gaussian PSF in the Fourier domain (o=1.2).
10/15/22
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FIGURE 5.25
[llustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

& =0.001.

(d) Low
turbulence,

k = 0.00025.
(Original image
courtesy of
NASA.)




Mathematical Modeling (2)

Derive a mathematical model from basic principles

E.g., An image blurred by uniform linear motion between
the image and the sensor during image acquisition
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Mathematical Modeling (3)

Suppose that an 1mage f (x, y) undergoes planar motion,
x,(¢) and y,(¢) are the time-varying components of motion
in the x- and y-directions, respectively.

The optical imaging process is perfect. T 1s the duration

of the exposure. The blurred image g(x, y)
T
g(r,3) = |, f[x=x,(0), 5= yo ()

10/15/22 75



o T
0

Mathematical Modeling (4)

gr,y)=| flx—x,(0),y -y, (0)]dt

G(u,v) = .

10/15/22

® OO

J‘_OO g(x, y)e—jzﬂ(ux+vy)dxdy
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Mathematical Modeling (4)

H(u,v) = IT g /2l O+ 0)] gy
0

77



Mathematical Modeling (5)

Suppose that the image undergoes uniform linear motion

in the x-direction and y-direction, at a rate given by
x,(¢)=at/T and y,(t)=bt/T

r _; T\ ux 1%
H (u,v) :J'O o2 (O ()] 70

T :
_ J;) e—]27r[ua+vb]t/Tdt
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When the scene to be recorded translates relative to the camera at a constant velocity Vielative
under an angle of ¢ radians with the horizontal axis during the exposure interval [0./exposure].
the distortion 1s one-dimensional. Defining the “length of motion™ by L= Viejative fexposure. the

PSF 1s given by:
| L X
— if Jx* +y® <= and — = -tan¢
d(x,v:L,¢)=11L 2 Y (7a)
0 elsewhere
[D(u,v)

I "'I"
Wiy i

’;;
Uiy i
[[I,I’I';’llllllfff;;,’l’l

1]
I,Illllll[

it

i

(a) (b)

Figure 2:  PSF of motion blur in the Fourier domain, showing |D(u,v)|, for (a) L=7.5 and
E ¢=0: (b) L=7.5 and ¢=rn/4



™ ab

FIGURE 5.26
(a) Original image.

‘ (b) Result of

P\ blurring using the
\\ function in Eq.
| (5.6-11) with
\ a=>b=01and
‘\“ T = 1.
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Inverse Filtering

An estimate of the transform of the original image
G(u,v)
H(u,v)

F(u,v) =

Fu,v)Hu,v)+ N(u,v)
H(u,v)

N(u,v)

H(u,v)

F(u,v)=

= F(u,v)+

10/15/22 81
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Inverse Filtering

N(u,v)

F(u,v)=F(u,v)+ H )

1. We can't exactly recover the undegraded 1mage

because N(u,v) 1s not known.
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Inverse Filtering

EXAMPLE

The 1mage 1n Fig. 5.25(b) was inverse filtered using the
exact inverse of the degradation function that generated

that 1image. That 1s, the degradation function 1s

5/6

, k£ =0.0025

k| (u=M12)" +(v-N/2)? |

H(u,v)=e

10/15/22

83



Inverse Filtering

One approach 1s to limit the filter frequencies to values near the origin.

EXAMPLE

The image 1n Fig. 5.25(b) was inverse filtered using the
exact inverse of the degradation function that generated

that image. That 1s, the degradation function is

—k[(u—M/2)2+(v—N/2)2T/6

H(u,v)=e
k=0.0025, M = N =480.

10/15/22 84
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FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq.(5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.

A Butterworth

lowpass
function of
order 10

The poor performance
of direct inverse
filtering in general
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Figure 5:

(c) (d)

(a) Image out-of-focus with SNRg=10.3 dB (noise variance = 0.35) (b) Inverse

filtered image, (c) Magnitude of the Fourier transform of the restored image.

The DC component lies in the center of the image. The oriented white lines are
spectral components of the image with large energy; (d) Magnitude of the
Fourier transform of the inverse filter response.
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Minimum Mean Square Error (Wiener)
Filtering

N. Wiener (1942)

Objective

Find an estimate of the uncorrupted image such that the mean
square error between them i1s minimized

e =E{(f- 1)}

10/15/22

87



Minimum Mean Square Error (Wiener)

Filtering

The minimum of the error function 1s given in the frequency domain

by the expression

F(u,v)=

H*(u,v)S ,(u,v)

S, (u,v) | H(u,v) B +5,(u,v)

H*(u,v)

1

| H(u,v) B +8,(u,v) /S (u,v) |

| H(u,v) [

G(u,v)

G(u,v)

10/15/22

H(u,v) | H(u,v) B +5,(w,v)/ S, (u,v)

G(u,v)
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Minimum Mean Square Error (Wiener)

F(u,v)=

Filtering

I | H(u,v)[

 H(u,v) | H(u,v)|” +Sn(u,v)/Sf(u,v)_

H(u,v) :degradation function

H *(u,v): complex conjugate of H(u,v)

| H(u,v) [

=H *(u,v)H(u,v)

. 2_ :
S, (u,v) =| N(u,v)| = power spectrum of the noise

G(u,v)

S, (u,v) =| F(u,v) |'= power spectrum of the undegraded image

10/15/22
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Minimum Mean Square Error (Wiener)
Filtering

1 [Hu»)[ }G(u 0

Flu,v)= {H(u,v) | H(u,v)|" +K

K 1s a specified constant. Generally, the value of K

1s chosen 1nteractively to yield the best visual results.
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Minimum Mean Square Error (Wiener)
Filtering

alb e

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (c¢) Wiener filter result.
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Left:
degradated
image

Middle:
inverse
filtering

Right:

Wiener
filtering
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Some Measures (1)

Singal-to-Noise Ratio (SNR)

This ratio gives a measure of the level of information

bearing singal power to the level of noise power.
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Some Measures (2)

Mean Square Error (MSE)
MSE=— O ECSIRIE y)}

Root-Mean-Sqaure-Error (RMSE)

10/15/22
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Figure 6:

(a) (h)

(c) (d)

(a) Wiener restoration of image in Figure 5(a) with assumed noise variance
equal to 35.0 (ASNR=3.7 dB), (b) Resroration using the correct noise variance
of 0.35 (ASNR=8.8 dB), (c) Restoration assuming the noise variance is 0.0035
(ASNR=1.1 dB). (d) Magnitude of the Fourier transform of the restored image
in Figure 6D.
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Constrained Least Squares

spatially invariant linear filter. If the restoration 1s a good one. the blurred version of the
restored image should be approximately equal to the recorded distorted image. That 1s:

((/[H,.HJ]*fl{rrl.nj}xg{nl.nj} (21)

Fxh + T =D

With the nverse filter the approximation 1s made exact. which leads to problems because a
match 1s made to noisy data. A more reasonable expectation for the restored image is that it
satisfies:

b i

5

/-1
k-0

M-1 . , "
S (gth k) -l ) * k1)) =02 (22)
by 0

[

||g(n1 11, )-h(nl ) *f’{nl 1, )|
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Constrained Least Squares Filtering

» In Wiener filter, the power spectra of the undegraded
image and noise must be known. Although a constant
estimate is sometimes useful, it is not always suitable.

» Constrained least squares filtering just requires the mean
and variance of the noise.

» Minimize cost function C = sum over all pixels (x,y) in the
image of [VZf(x,y)]?

subject to: - /j\; yh + ﬁt = %

[Hg=HF 1> =1lInll?
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Constrained Least Squares Filtering

F(u,v) 2{ o) }G(u,v)

| Hw,v)[* +y | P(u,v) [

P(u,v) 1s the Fourier transform of the function

0 -1 0
plx,y)=|-1 4 -l
0 -1 0

y 1s a parameter

10/15/22



Examples

a4 b e

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering
results in Figs. 5.29(c), (f), and (i), respectively.
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Geometric Mean Filter

F(u,v)= G0
’ | H (u,v) [

a=1:

T

| H(u,v) [

| H(w,v) [ +ﬂ[s,7(u,v)/sf(u,v)]_

inverse filter

a=0: parametric Wiener filter

a=1/2: geometric mean filter

10/15/22

G(u,v)
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Image Reconstruction from Projection

Reconstruct an image from a series of projections
X-ray computed tomography (CT)

“Computed tomography is a medical imaging method employing
tomography where digital geometry processing is used to generate a
three-dimensional image of the internals of an object from a large

series of two-dimensional X-ray images taken around a single axis of
rotation.”

http://en.wikipedia.org/wiki/Computed_tomography
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Backprojection

" In computed tomography or other imaging techniques
requiring reconstruction from multiple projections, an
algorithm for calculating the contribution of each voxel of
the structure to the measured ray data, to generate an
image; the oldest and simplest method of image
reconstruction. "

http://www.medilexicon.com/medicaldictionary.php?t=9165
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Image Reconstruction: Introduction

Absorption profile

\

Soft, uniform
tissue

Uniform with higher
absorption Tumor

WR12222222RRRARRRAE.

Detector strip

~
7 Intensity is
proportional to

A absorption —

ab
cde

FIGURE 5.32

(a) Flat region
showing a simple
object, an input
parallel beam, and

a detector strip.

(b) Result of back-
projecting the
sensed strip data
(i.e., the 1-D absorp-
tion profile). (c) The
beam and detectors
rotated by 90°.

(d) Back-projection.
(e) The sum of (b)
and (d). The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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Image Reconstruction: Introduction

abc
de f

FIGURE 5.33

(a) Same as Fig.
5.32(a).

(b)—(e)
Reconstruction
using 1,2,3,and 4
backprojections 45°
apart.

(f) Reconstruction
with 32 backprojec-
tions 5.625° apart
(note the blurring).
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a ke
de f

FIGURE 5.34 (a) A region with two objects. (b)—(d) Reconstruction using 1, 2, and 4
backprojections 45° apart. (e) Reconstruction with 32 backprojections 5.625° apart.
10i15:(f) Reconstruction with 64 backprojections 2.8125° apart. 105



- 3 Source A
< 7.
FIGURE 5.35 Four L |
. / Vi \\\
generations of CT Yy Nl
/ e \\
scanners. The s

dotted arrow

lines indicate N
incremental ( , i \\‘\\,\\/
linear motion.
The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion
perpendicular to
the plane of the
paper. The
double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.

0
Detector
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Other CTs

Electron beam CT (Fifth-generation CT)

Electron beam tomography (EBCT) was introduced in the early 1980s, by
medical physicist Andrew Castagnini, as a method of improving the temporal
resolution of CT scanners.

High cost of EBCT equipment, and poor flexibility

Helical (or spiral) cone beam computed tomography (sixth-generation)

A type of three dimensional computed tomography (CT) in which the source
(usually of x-rays) describes a helical trajectory relative to the object while a
two dimensional array of detectors measures the transmitted radiation on part
of a cone of rays emitting from the source

http://en.wikipedia.org/wiki/Computed_tomography
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Other CTs

Multislice CT (seventh-generation)

The major benefit of multi-slice CT

Significant increase in detail
Utilizes X-ray tubes more economically
Reducing cost and potentially reducing dosage
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Projections and the Radon Transform

xcosf + ysinf = p

FIGURE 5.36 Normal representation of a straight line.
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Projections and the Radon Transform

FIGURE 5.37
Geometry of a

parallel-ray beam. y A point g(pj, Ox) In

8 . Q the projection
Complete projection, g(p, 8;).
for a fixed angle — ‘1

y

2(p.0)=| | f(x.y)8(xcos6, +ysin6, — p,)dxdy

10/15/22 110



Projections and the Radon Transform

Radon transform gives the projection (line integral) of
f(x,y) along an arbitrary line in the xy-plane

R{f)=g(p,0)= jfo ji £(x, )5 (xcos O + ysin O — p)dxdy

M-1N-1

R{f=g(p,0)=> > f(x,y)6(xcos0+ ysinb - p)

x=0 y=0

10/15/22 111



Example: Using the Radon transform to obtain
the projection of a circular region

Assume that the circle is centered on the origin of the xy-plane.
Because the object is circularly symmetric, its projections are the
same for all angles, so we just check the projection for 8 =0

A X’ +y? <y
f(x,y)={

0 otherwise
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Example: Using the Radon transform to obtain
the projection of a circular region

2(p.0)=| [ f(x.3)3(xcos0+ ysin0— p)xdy
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g(p)=

10/15/22

2Ar = p°
0

pl=r
otherwise

p)

Y
-

FIGURE 5.38 A disk
and a plot of its
Radon transform,
derived analytically.
Here we were able to
plot the transform
because it depends
only on one variable.
When g depends on
both p and #, the
Radon transform
becomes an image
whose axes are p and
6, and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.
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Sinogram: The Result of Radon Transform

180

. 135

» Sinogram: the
result of Radon
transform is

6 90

displayed as an n
image with
0
o and & as 180
rectilinear
. 135
coordinates
# 90
45
0
ab
elid
FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram
10/15/22 is a projection along the corresponding angle on the vertical axis. Image (c) is called the

Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is
shown enhanced here to facilitate viewing,.



The Fourier-Slice Theorem

For a given value of &, the 1-D Fourier transform

of a projection with respect to p 1s

Gw.0) =] g(p.0)e "™ dp

[ S 3)8(xcos 0+ ysind— p)e ™ d pdxdy

=[], @) U“; S(xcos O+ ysin0— pe ™ d p }My

\_ [ f(x y)e—j27m)(xcos6’+ysin8)dxdy
5
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The Fourier-Slice Theorem

G(w,0) = g(p,O)e > dp

G(a)’ 9) _ ._oo I_oo f(x, y)e—jZﬂa)(xcosH+ysin9)dxdy

_ _J‘: I_“; f(x, y)e—j27z'(ux+vy)dxdy:|

= :F(u,v)]

u=wcos@,v=wsin 6

u=wcos@,v=wsin 6

= F(wcos &, wsin 0)

Fourier-slice theorem: The Fourier tansform of a projection is a slice of

the 2-D Fourier transform of the region from which the projection was

obtained
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Illustration of the Fourier-slice theorem

Projection ~

2-D Fourier
transform
F(u,v)

4

A

10/15/22

1-D Fouri

transform

\

cr

u

Y

FIGURE 5.41
INlustration of the
Fourier-slice theo-
rem. The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
Note the corre-
spondence of the
angle 6.



Reconstruction methods

Simple : - Nearest Neighbor (zero order interpolation)
- First order interpolation.

Radon inversion formula

Iterative methods



Transform reconstruction

Polar Sampling: E.g.: 9 point DFT in each direction , 8 projections

The samples are equally spaced

A The goal is to find the FT values on the

Q, cartesian grid given the values at the polar
coordinate system (red points)
We can then apply one of the following
interpolation methods:

Zeroth order - Nearest Neighbor
First order > Weighed Sum of neighbor samples (Average)

Q

1

»
»

_-
—-——---"

_______




Radon Inversion Formula

Recall that IDFT 2D of Fc(Q,4, Q,) is:

|| F©.)e™e™d0,dq,

fc(tptz) = 4,72

We can express this expression using polar coordinates:
.e.. (Qq, Q)2 (w, 0).

Q

2




Radon Inversion Formula

To accomplish this we need the jacobian:

si x=gu,v) y y=hu,v)ie.:
” f(x,y)dxdy :” f(g(u,v),h(u,v))J dudv where

o) o)
79Xy _ o(u) 0| _a(x) a(y) o(y) o(x)

ou,v) [0(y) o) Ju) o) Ju)o(v)
ou) o(v)




Radon Inversion Formula
si Q =g 0)=wcosld y Q, =h(w,0)=wsent
ie..

e o(x,y) |cos@ —wsent

_@(u,v) sen@ wcosl

Therefore fc(t4, t,) will be:

T +00

412 j j F.(w cos 0, sen 8) e’ """ el dwd
4 0 —0

fc(tlatz):



Formula for inversion of Radon

Then we have:

T +00

fc(l‘pl‘z)_ jethcostrtsen g daw do
0%\ J
Y
£y (w)
foltaty) =~ Joteosotsen o) deap d

\ )
hd



Formula de inversion de Radon

The second integral is an IDFT:

1 T +00

I I I)g(a))eja)(tlcos9+t2sen9) ‘a)‘ d(() Cl’H
- hd -
/ T >

[ = I G,(w)e’”'dw where:

fc(tlotz):

A7?

G,(®)=F)(»)|w| IDFT|G,(w)]=g,(?)

y t=tcosO+t,senl



Formula de inversion de Radon

This gives us:  =g,(¢)

t=t, cos O+t, sen 0

[ = g,(tcos O+t,sen 0)

Substituting in fc(t4, t,) we have:

1

A7r*

fc(tlatz):

[ ,(t,c0s 0-+t,5en 0) do
0




Formula de inversion de Radon

Finally:
1

A7?

f.(t,1,) = j g, (t,cos 0 +t, sen 0) dO
0

G,(®) =Py (0)|o] = g,(1)=p(6,1)® IDFT {|w|}

y t=tcos@+t,sen



Radon Inversion Formula

Summary:

g,(1) = p(6,1)® IDFT {|al} = d 7 F () 4

0 dt Jot-1
1- Find p(6,1) +°OP(2')
2- Evaluate g,(¢) = p(0, f)®1DFT{\0)\} = T

3- Substitute in fc(t,, t,)

fc(tlatz) — 4

(t,cos @ +t,sen 0) doO



Convolution Backprojection

1
2 g(t)
O
g(to) t()/\f g t
A |
" 0
S £
t, 0 1 T (1) d6
’ _ 8o
t < 1 VAURZY 47’ 0
0 £

fc(tloat;)) =g(t,)



Reconstruction Using Parallel-Beam Filtered
Backprojections

f(x,y)= I_OO J_OO F(u,v)e””" ™™ dudy o
Let u = wcosd,v=wsin @, then dudv = wdwdo,

J(x,p)=|

N A

_ 0 \ G(W, e)ej27rw(xcost9+ysinH)dede

DT

o0 / 2 2
|, F(wecos8,wsin O)e’ mwreostrysnd)yy, dwd @

G(w,0+180 ) =G(—w,0)
f(x, y) _ J‘Oﬁ J*_OO | W| G(W, g)ejzﬂW(xcosﬁ+ysin6)dwd9
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Reconstruction Using Parallel-Beam Filtered
Backprojections

f(x, y) _ -Oyz Jﬂ_oo | W| G(W, e)ejzyzw(xcos<9+ysin9)dwd9

It's not [ oo P2wp
integrable [ J, |:_[ | WJ..-G(W, 0)e dw doé
: — e p=xcosf+ysinf

Approach:

Window the ramp so it becomes zero outside of a defined frequency
interval. That is, a window band-limits the ramp filter.
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Hamming / Hann Widow

-

c+(c—1)cos 27w
h(w) =< M —1

0 otherwise

O0<w(M-1)

\

c =0.54, the function is called the Hamming window

c = 0.5, the function is called the Han window

10/15/22
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The Plot of Hamming Widow

Frequency
domain

Spatial
domain

)

10/15/22

Frequency
domain

VIV

Frequency
domain

Spatial
domain

ab
cde

FIGURE 5.42

(a) Frequency
domain plot of the
filter |w| after band-
limiting it with a

box filter. (b) Spatial
domain
representation.

(c) Hamming
windowing function.
(d) Windowed ramp
filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
product (note the
decrease in ringing).
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Filtered Backprojection

The complete, filtered backprojection (to obtain the
reconstructed image f(x,y) ) is described as follows:

Compute the 1-D Fourier transform of each projection

Multiply each Fourier transform by the filter function |w]|
which has been multiplied by a suitable (e.g., Hamming)
window

Obtain the inverse 1-D Fourier transform of each
resulting filtered transform

Integrate (sum) all the 1-D inverse transforms from step
3
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Examples: Filtered Backprojection

ab
c d

FIGURE 5.43

Filtered back-
projections of the
rectangle using (a) a
ramp filter, and (b) a
Hamming-windowed
ramp filter. The
second row shows
zoomed details of the
images in the first
row. Compare with

Fig.5.40(a).
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Examples: Filtered Backprojection

ab

FIGURE 5.44

Filtered
backprojections of
the head phantom
using (a) a ramp
filter,and (b) a
Hamming-windowed
ramp filter. Compare
with Fig. 5.40(b).
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Implementation of Filtered Backprojection in

Spatial Domain

Fourier transform of the product of two frequency domain
functions is equal to the convolution of the spatial
representation

Let s(p) denote the inverse Fourier transform of |w]|

fen=]

7T

10/15/22

J0
T

J0

[ 1wlGow. e)efzﬂwpdw} do

p=xcosf+ysinf

s(p)kg(p,0)] do

p=xcosf+ysinf

[ g(p.0)s(xcos 0+ ysin O - p)dp}d&’
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