Deep Learning Tutorial

Courtesy of Hung-yi Lee

Machine Learning Basics

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed

Methods that can learn from and make predictions on data

Types of Learning

Supervised: Learning with a labeled training set
Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data
Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward
Example: learn to play Go, reward: win or lose

Anomaly Detection
Sequence labeling

ML vs. Deep Learning

Most machine learning methods work well because of human-designed representations and input features
ML becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL) ?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers
If you provide the system tons of information, it begins to understand it and respond in useful ways.

Machine Learning

Deep Learning

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Traditional and deep learning

(a) Traditional vision pipeline

(b) Classic machine learning pipeline

(c) Deep learning pipeline

Why is DL useful?

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Can learn both unsupervised and supervised
- Effective end-to-end joint system learning
- Utilize large amounts of training data
- deep learning machine learning

In ~2010 DL started outperforming other
ML techniques
first in speech and vision, then NLP

Image Classification: A core task in Computer Vision

(assume given set of discrete labels) \{dog, cat, truck, plane, ...\}
licensed under CC-BY 2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of numbers between [0, 255]:
e.g. $800 \times 600 \times 3$

This image by Nikita is
licensed under CC-BY 2.0
(3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Challenges: Illumination

This image is CCO 1.0_public domain

This image_s CCO 1.0_public domain

This image js CCO 1.0public domain

This image is CCO 1.0_public domain

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This imaqe by sare bear is

This image_by Tom Thai is
licensed under CC-BY2.0

Challenges: Occlusion

This image is CCO 1.0_public domain

This image is CC0 1.0 public domain

This imace by ionsson is licensed under CC-BY 2.0

Challenges: Background Clutter

This image is CCO 1.0 public domain

This image is CCO 1.0 public domain

Challenges: Intraclass variation

This image js CCO 1.0_public domain

Linear Classification

Recall CIFAR10

50,000 training images each image is $32 \times 32 \times 3$

10,000 test images.

Parametric Approach

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

10 numbers giving class scores

Parametric Approach: Linear Classifier

Image
 $\mathrm{f}(\mathrm{x}, \mathrm{W})=\mathrm{Wx}$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

parameters
or weights

10 numbers giving class scores

Parametric Approach: Linear Classifier

parameters
or weights

Parametric Approach: Linear Classifier

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

3072x1
 $f(x, W)=W \mathrm{X}+\mathrm{D}_{10 \times 1}$
 10x1 10x3072

10 numbers giving class scores
parameters
or weights
${ }^{2}$ Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Example for 2×2 image, 3 classes (cat/dog/ship)

Stretch pixels into column
$f(x, W)=W x+b$

Example for 2×2 image, 3 classes (cat/dog/ship)

Linear Classifier: Algebraic Viewpoint

Linear Classifier: Bias Trick

 Add extra one to data vector; bias is absorbed into last column of weight matrixStretch pixels into column

Linear Classifier: Predictions are Linear!

$$
\begin{aligned}
& f(x, W)=W x \quad \text { (ignore bias) } \\
& f(c x, W)=W(c x)=c^{*} f(x, W)
\end{aligned}
$$

Linear Classifier: Predictions are Linear!

$$
\begin{aligned}
& f(x, W)=W x \quad \text { (ignore bias) } \\
& f(c x, W)=W(c x)=c^{*} f(x, W)
\end{aligned}
$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$
f(x, W)=W x+b
$$

Interpreting an Linear Classifier

Interpreting an Linear Classifier: Visual Viewpoint
 Linear classifier has one "template" per category

Visual Viewpoint

Interpreting an Linear Classifier:

Linear classifier has one "template" per category
A single template cannot capture multiple modes of the data
e.g. horse template has 2 heads!

Interpreting a Linear Classifier: Geometric Viewpoint

$f(x, W)=W x+b$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Interpreting a Linear Classifier: Geometric Viewpoint
 Pixel

Interpreting a Linear Classifier: Geometric Viewpoint

$f(x, W)=W x+b$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Hard Cases for a Linear Classifier

Class 1:
First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2
Class 2:
Everything else

Class 1 :
Three modes
Class 2:
Everything else

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So Far: Defined a linear score function
 $$
f(x, W)=W x+b
$$

airplane	-3.45	-0.51	3.42
automobile	-8.87	$\mathbf{6 . 0 4}$	4.64
bird	0.09	5.31	2.65
cat	$\mathbf{2 . 9}$	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Given a W, we can compute class scores for an image x .

But how can we actually choose a good W?

Choosing a good W

$$
f(x, W)=W x+b
$$

airplane	-3.45	-0.51	3.42
automobile	-8.87	$\mathbf{6 . 0 4}$	4.64
bird	0.09	5.31	2.65
cat	$\mathbf{2 . 9}$	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

1. Use a loss function to quantify how good a value of W is
2. Find a W that minimizes the loss function (optimization)

Loss Function

A loss function tells how good our current classifier is

Low loss = good classifier High loss = bad classifier
(Also called: objective function; cost function)

Loss Function

A loss function tells how good our current classifier is

Low loss = good classifier
High loss = bad classifier
(Also called: objective function; cost function)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Loss Function

A loss function tells how good our current classifier is

Low loss = good classifier
High loss = bad classifier
(Also called: objective function; cost function)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and
y_{i} is (integer) label

Loss Function

A loss function tells how good our current classifier is

Low loss = good classifier High loss = bad classifier
(Also called: objective function; cost function)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and
y_{i} is (integer) label
Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss Function

A loss function tells how good our current classifier is

Low loss = good classifier
High loss = bad classifier
(Also called: objective function; cost function)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and
y_{i} is (integer) label
Loss for a single example is

$$
L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Loss for the dataset is average of per-example losses:
$L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)$

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Highest score
among other
classes

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Highest score "Margin"
among other classes

Regularization: Beyond Training Error

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}
$$

Data loss: Model predictions
should match training data

Regularization: Beyond Training Error

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization: Beyond Training Error

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

$\lambda \underset{\text { (hyperparameter) }}{=}$ regularization strength

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization: Beyond Training Error

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples
L2 regularization: $\quad R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $\quad R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $\quad R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right| \quad$ Cutout, Mixup, Stochastic depth, etc...

Regularization: Beyond Training Error

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Purpose of Regularization:

- Express preferences in among models beyond "minimize training error"
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

The model f_{1} fits the training data perfectly
The model f_{2} has training error, but is simpler

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization is important! You should (usually) use it.

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

cat 3.2
car 5.1
frog -1.7

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

cat
 3.2

car 5.1
frog -1.7

Cross-Entropy Loss (Multinomial Logistic Regresession ${ }_{\text {an }}$ (lassifier scores as probabilities

Cross-Entropy Loss (Multinomial Logistic Regression ${ }_{\text {and }}$ (

Cross-Entropy Loss (Multinomial Logistic Regresession ${ }^{\text {and }}$ (lassifier scores as probabilities

Cross-Entropy Loss (Multinomial Logistic Regression ${ }_{\text {and }}$ (

Cross-Entropy Loss (Multinomial Logistic Regression ${ }_{\text {and }}$ (

Cross-Entropy Loss (Multinomial Logistic Regresession ${ }_{\text {an }}$ (lassifier scores as probabilities

		$s=f\left(x_{i} ; W\right)$				Softmax
			Probabilities must be >=	robabilities ust sum to	$L_{i}=-\log P(Y=$	\| $X=x_{i}$
cat	3.2	$\xrightarrow{\text { exp }}$	24.5	0.13	\rightarrow Compare $\leftarrow 1.00$	
	5.1		仡	0.87		0.00
frog	-1.7		0.18	0.00		0.00
	Sobabilies logis		Unnormalized	probabi		$cCorrect probs$

Cross-Entropy Loss (Multinomial Logistic Regresession ${ }_{\text {an }}$ (lassifier scores as probabilities

		$s=f\left(x_{i} ; W\right)$			$P\left(Y=k \mid X=x_{i}\right)=\frac{e^{*} k^{*}}{\sum_{j} e^{j}}$			
			Probabilities		bilities	$L_{i}=-\log P(Y=$	\| $X=x_{i}$	
	3.2		24.5		0.13	\rightarrow Compare \leftarrow	1.00	
	5.1	exp			0.87		0.00	
	-1.7		0.18		0.00	$D_{K L}(P \\| Q)$	0.00	
	lites		unnormalized		frobabilities	$\sum P(y) \log \frac{P(y)}{Q(y)}$	$cCorrect probs$	

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Softmax
function

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$
car 5.1
frog -1.7

Cross-Entropy Loss (Multinomial Logistic Regressionn) chand intier scores as probabilities

cat 3.2

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{j_{j}}}
$$

Maximize probability of correct class
Putting it all together:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

Q: What is the $\min /$ max possible loss L_{i} ?

Cross-Entropy Loss (Multinomial Logistic Regression ${ }^{2}$,

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{j_{j}}}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$
car 5.1
frog -1.7
Putting it all together:
cat 3.2
Q: What is the min / max possible loss L_{i} ?

A: Min 0, max +infinity

Cross-Entropy Loss (Multinomial Logistic Regressionn) chand intier scores as probabilities

cat 3.2
car 5.1
Q: If all scores are
frog -1.7 small random values, what is the loss?

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s} k}{\sum_{j} e^{s_{j}}}
$$

Softmax
function

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$
Putting it all together:

Cross-Entropy Loss (Multinomial Logistic Regression ${ }^{2}$,

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{j_{j}}}
$$

Maximize probability of correct class
$L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$
Putting it all together:
cat 3.2
car 5.1
Q: If all scores are small random values, what is the loss?

$$
\begin{aligned}
& \text { A: }-\log (1 / C) \\
& \log (10) \approx 2.3
\end{aligned}
$$

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

$$
s=f(x ; W)=W x
$$

Linear classifier

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Q: How do we find the best W ?

$$
s=f(x ; W)=W x
$$

Linear classifier

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Problem: Linear Classifiers aren't that powerful

Visual Viewpoint
One template per class:
Can't recognize different
modes of a class

One solution: Feature Transforms

Original space

$$
\begin{aligned}
& r=\left(x^{2}+y^{2}\right)^{1 / 2} \\
& \theta=\tan ^{-1}(y / x) \\
& \begin{array}{c}
\text { Feature } \\
\text { transform }
\end{array}
\end{aligned}
$$

One solution: Feature Transforms

Feature space

One solution: Feature Transforms

Feature space

in feature space

One solution: Feature Transforms

$$
\begin{aligned}
& r=\left(x^{2}+y^{2}\right)^{1 / 2} \\
& \theta=\tan ^{-1}(y / x)
\end{aligned}
$$

transform

Feature space

Deep learning attracts lots of attention.

- Google Trends

How the Human Brain learns

- In the human brain, a typical neuron collects signals from others through a host of fine structures called dendrites.
- The neuron sends out spikes of electrical activity through a long, thin stand known as an axon, which splits into thousands of branches.
- At the end of each branch a structure called a synapse converts the activity from the axon into electrical effects that inhibit or excite activity in the connected neurons.

Our brains are made of Neurons

Impulses
carried toward cell body

Impulses carried away from cell body

Cell
body

Firing rate is a nonlinear function of inputs

A Neuron Model

- When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes.

- We conduct these neural networks by first trying to deduce the essential features of neurons and their interconnections.
- We then typically program a computer to simulate these features.

A Simple Neuron

- An artificial neuron is a device with many inputs and one output.
- The neuron has two modes of operation;
- the training mode and
- the using mode.

A Simple Neuron (Cont.)

- In the training mode, the neuron can be trained to fire (or not), for particular input patterns.
- In the using mode, when a taught input pattern is detected at the input, its associated output becomes the current output. If the input pattern does not belong in the taught list of input patterns, the firing rule is used to determine whether to fire or not.
- The firing rule is an important concept in neural networks and accounts for their high flexibility. A firing rule determines how one calculates whether a neuron should fire for any input pattern. It relates to all the input patterns, not only the ones on which the node was trained on previously.

$$
\begin{gathered}
\text { Part I: } \\
\text { Introduction of } \\
\text { Deep Learning }
\end{gathered}
$$

What people already knew in 1980s

Example Application

- Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Example Application

- Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $f: R^{K} \rightarrow R$

Neural Network

neuron

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

$$
f: R^{2} \rightarrow R^{2} \quad f\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
0.62 \\
0.83
\end{array}\right] \quad f\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0.51 \\
0.85
\end{array}\right]
$$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$y=f(x) \quad$ Using parallel computing techniques to speed up matrix operation
$=\sigma\left(\mathrm{W}^{\mathrm{L}} \cdots \sigma\left(\mathrm{W}^{2} \sigma\left(\mathrm{~W}^{1} \mathrm{x}+\mathrm{b}^{1}\right)+\mathrm{b}^{2}\right) \cdots+\mathrm{b}^{\mathrm{L}}\right)$

Softmax

- Softmax layer as the output layer

Ordinary Layer

$$
\begin{aligned}
& z_{1} \longrightarrow \sigma \longrightarrow y_{1}=\sigma\left(z_{1}\right) \\
& z_{2} \longrightarrow \sigma \longrightarrow y_{2}=\sigma\left(z_{2}\right) \\
& z_{3} \longrightarrow \sigma \longrightarrow y_{3}=\sigma\left(z_{3}\right)
\end{aligned}
$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Probability:

- Softmax layer as the output layer

■ $1>y_{i}>0$
■ $\sum_{i} y_{i}=1$

Softmax Layer

How to set network parameters

$$
\theta=\left\{W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L}\right\}
$$

Ink $\rightarrow 1$
No ink $\rightarrow 0$

Set the network parameters θ such that
Inpu How to let the neural m value network achieve this
Input: $\alpha \longmapsto y_{2}$ nas tne maximum value

Training Data

- Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost
Given a set of network parameters θ, each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$
C(\theta)=\sum_{r=1}^{R} L^{r}(\theta)
$$

How bad the network
parameters θ is on this task

Find the network
parameters θ^{*} that minimize this value

Assume there are only two parameters w_{1} and w_{2} in a network.

$$
\theta=\left\{w_{1}, w_{2}\right\}
$$

Randomly pick a starting point θ^{0}

Compute the negative gradient at θ^{0}
$\square-\nabla C\left(\theta^{0}\right)$
Times the learning rate η
$\square-\eta \nabla C\left(\theta^{0}\right)$

Gradient Descent

Randomly pick a starting point θ^{0}

Compute the negative gradient at θ^{0}
$\square-\nabla C\left(\theta^{0}\right)$
Times the learning rate η
$\Rightarrow-\eta \nabla C\left(\theta^{0}\right)$

Local Minima

- Gradient descent never guarantee global minima

Besides local minima

Mini-batch

$>$ Randomly initialize θ^{0}

$>$	Pick the $1^{\text {st }}$ batch
	$C=C^{1}+C^{31}+\cdots$
	$\theta^{1} \leftarrow \theta^{0}-\eta \nabla C\left(\theta^{0}\right)$
$>$	Pick the $2^{\text {nd }}$ batch
	$C=C^{2}+C^{16}+\cdots$
	$\theta^{2} \leftarrow \theta^{1}-\eta \nabla C\left(\theta^{1}\right)$
	$\quad \vdots$
$>$	Until all mini-batches
	have been picked

Backpropagation

- A network can have millions of parameters.
- Backpropagation is the way to compute the gradients efficiently (not today)
- Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201 5_2/Lecture/DNN\%20backprop.ecm.mp4/index.html
- Many toolkits can compute the gradients automatically

theano
 Ref:

 TensorFlow

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lec ture/Theano\%20DNN.ecm.mp4/index.html

Size of Training Data

- Rule of thumb:
- the number of training examples should be at least five to ten times the number of weights of the network.
- Other rule:

$|W|=$ number of weights
$a=$ expected accuracy on test
set

Training: Backprop algorithm

- The Backprop algorithm searches for weight values that minimize the total error of the network over the set of training examples (training set).
- Backprop consists of the repeated application of the following two passes:
- Forward pass: in this step the network is activated on one example and the error of (each neuron of) the output layer is computed.
- Backward pass: in this step the network error is used for updating the weights. Starting at the output layer, the error is propagated backwards through the network, layer by layer. This is done by recursively computing the local gradient of each neuron.

Back Propagation

- Back-propagation training algorithm

Network activation
Forward Step

Error propagation Backward Step

- Backprop adjusts the weights of the NN in order to minimize the network total mean squared error.

Part II: Why Deep?

Universality Theorem

Any continuous function f

$$
f: R^{N} \rightarrow R^{\mathrm{M}}
$$

Can be realized by a network with one hidden layer
(given enough hidden neurons)

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall
The same number of parameters

Shallow

Deep

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Neural networks re-visited

Neural networks: without the brain stuff

(Before) Linear score function: $\quad f=W x$

Neural networks: without the brain stuff

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: without the brain stuff
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: without the brain stuff
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: without the brain stuff
(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)
$$

Activation functions

Sigmoid
 $\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU
 $\max (0.1 x, x)$

Maxout
$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$
ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Neural networks: Architectures

Next: Convolutional Neural Networks

Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

A bit of history:

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
"AlexNet"

Fast-forward to today: ConvNets are

everywhere

self-driving cars

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)
Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Convolutional Neural Networks

(First without the brain stuff)

Fully Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Fully Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Convolution Layer

$32 \times 32 \times 3$ image -> preserve spatial structure

${ }^{2}$ Convolution Layer

- $32 \times 32 \times 3$ image

- $5 \times 5 \times 3$ filter

- Convolve the filter with the image
- i.e. "slide over the image spatially, computing dot products"

${ }^{2}$ Convolution Layer

- $32 \times 32 \times 3$ image

- $5 \times 5 \times 3$ filter

- Convolve the filter with the image
- i.e. "slide over the image spatially, computing dot products"

Convolution

 c Layer 32x32x3 image

Convolution

c Layer

activation map

Convolution Layer

consider a second, green filter

activation maps

For example, if we had 65×5 filters, we'll get 6 separate activation maps:

activation maps

> Convolution Layer

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

CONV, ReLU

Preview

VGG-16 Conv1_1
[Zeiler and Fergus 2013]

Preview

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

The brain/neuron view of CONV Layer

An activation map is a 28×28 sheet of neuron outputs:

1. Each is connected to a small region in the input
2. All of them share parameters
" 5×5 filter" -> " 5×5 receptive field for each neuron"

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Each neuron

$32 \times 32 \times 3$ image -> stretch to 3072×1 looks at the full input volume

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like
[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to $\sim 5, \mathrm{M}$ is large, $0<=\mathrm{K}<=2$.
- but recent advances such as ResNet/GoogLeNet challenge this paradigm

