
Deep Learning Tutorial

Courtesy of Hung-yi Lee

Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed

Methods that can learn from and make predictions on data

Labeled Data

Data

Machine Learning
algorithm

Learned model Prediction

Training
Prediction

Machine Learning Basics

Regression

Supervised: Learning with a labeled training set
Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data
Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward
Example: learn to play Go, reward: win or lose

Types of Learning

class A

class A

Classification

Anomaly Detection
Sequence labeling
…

Clustering

http://mbjoseph.github.io/2013/11/27/measure.html

Most machine learning methods work well because of human-designed
representations and input features
ML becomes just optimizing weights to best make a final prediction

ML vs. Deep Learning

A machine learning subfield of learning representations of data. Exceptional effective
at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of) representation by using
a hierarchy of multiple layers
If you provide the system tons of information, it begins to understand it and respond
in useful ways.

What is Deep Learning (DL) ?

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Traditional and deep learning

Richard Szeliski UW CSE 576 - Deep Neural Networks 6

o Manually designed features are often over-specified, incomplete and take a long time
to design and validate

o Learned Features are easy to adapt, fast to learn
o Deep learning provides a very flexible, (almost?) universal, learnable framework for

representing world, visual and linguistic information.
o Can learn both unsupervised and supervised
o Effective end-to-end joint system learning
o Utilize large amounts of training data

Why is DL useful?

In ~2010 DL started outperforming other
ML techniques
first in speech and vision, then NLP

Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

cat

This image by Nikita is
licensed under CC-BY2.0

Lecture 2 - 8

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

This image by Nikita is
licensed under CC-BY2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

Lecture 2 - 9

e.g. 800 x 600 x 3
(3 channels RGB)

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

All pixels change when
the camera moves!

Lecture 2 - 1
0

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Illumination

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Lecture 2 -

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Lecture 2 -

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Lecture 2 -

1

3

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Lecture 2 -

1

4

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Lecture 2 -

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Linear Classification

Lecture 2 -

Recall CIFAR10

50,000 training images
each image is 32x32x3

10,000 test images.

Lecture 2 -

1

7

1

8

Parametric Approach

Image

f(x,W) 10 numbers giving
class scores

Lecture 2 -

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving
class scores

u

n

g

Lecture 2 -

1

9

0

1

8

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Parametric Approach: Linear Classifier

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

3072x1
f(x,W) = Wx

10x1 10x3072
f(x,W)

Lecture 2 -

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b

Parametric Approach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Lecture 2 -

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

n

g

Lecture 2 -

2

2

1.1

3.2

-1.2

-96.8

437.9

61.95

+ =
Cat score

Dog score

Ship score

b

Example for 2x2 image, 3 classes
(cat/dog/ship)

EECS 498-007 Lecture 2 - 23

Input image
(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

(4,)

f(x,W) = Wx + b

Example for 2x2 image, 3 classes
(cat/dog/ship)

EECS 498-007 Lecture 2 - 24

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b

Linear Classifier: Algebraic
Viewpoint

EECS 498-007 Lecture 2 - 25

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b

Linear Classifier: Bias Trick

EECS 498-007 Lecture 2 - 26

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

-96.8

437.9

61.95

=

(5,)
(3, 5) (3,)

1

Add extra one to data vector;
bias is absorbed into last
column of weight matrix

Linear Classifier: Predictions are
Linear!

EECS 498-007 Lecture 2 - 27

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier: Predictions are
Linear!

EECS 498-007 Lecture 2 - 28

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores

-96.8

437.8

62.0

-48.4

218.9

31.0

0.5 * Scores

EECS 498-007 Lecture 2 - 29

Interpreting a Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

f(x,W) = Wx + b

Algebraic Viewpoint

EECS 498-007 Lecture 2 - 30

Interpreting a Linear Classifier

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

Algebraic Viewpoint

f(x,W) = Wx + b

EECS 498-007 Lecture 2 - 31

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier

EECS 498-007 Lecture 2 - 32

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

EECS 498-007 Lecture 2 - 33

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

Linear classifier has one
“template” per
category

EECS 498-007 Lecture 2 - 34

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

Linear classifier has one
“template” per
category

A single template cannot capture
multiple modes of the data

e.g. horse template has 2 heads!

Interpreting a Linear Classifier:
Geometric Viewpoint

EECS 498-007 Lecture 2 - 35

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane
Score

Car Score

Deer ScoreClassifie
r score

Interpreting a Linear Classifier:
Geometric Viewpoint

EECS 498-007 Lecture 2 - 36

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car
Score = 0

Pixel
(11, 11, 0)

Car score
increases
this way

Interpreting a Linear Classifier: Geometric Viewpoint

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 2 -

37 April 9, 2020

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard Cases for a Linear Classifier

EECS 498-007 Lecture 2 - 38

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

Linear Classifier: Three Viewpoints

EECS 498-007 Lecture 2 - 39

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

So Far: Defined a linear score
function

EECS 498-007 Lecture 2 - 40

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36

-0.72

-0.51
6.04
5.31
-4.22

-4.19
3.58
4.49

-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can
compute class scores
for an image x.

But how can we
actually choose a
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Choosing a good W

EECS 498-007 Lecture 2 - 41

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36

-0.72

-0.51
6.04
5.31
-4.22

-4.19
3.58
4.49

-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to
quantify how good a
value of W is

2. Find a W that minimizes
the loss function
(optimization)

Loss Function

EECS 498-007 Lecture 2 - 42

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Loss Function

EECS 498-007 Lecture 2 - 43

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Loss Function

EECS 498-007 Lecture 2 - 44

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss Function

EECS 498-007 Lecture 2 - 45

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Loss Function

EECS 498-007 Lecture 2 - 46

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Loss for the dataset is average of
per-example losses:

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 47

Loss

Score for
correct class

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 48

Loss

Score for
correct class

Highest score
among other
classes

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 49

Loss

Score for
correct class

Highest score
among other
classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 50

Loss

Score for
correct class

Highest score
among other
classes

“Margin”

Given an example
(is image, is label)

Let be scores

Then the SVM loss has the form:
“Hinge Loss”

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 66

Data loss: Model predictions
should match training data

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 67

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 68

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 69

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization:
L1 regularization:
Elastic net (L1 + L2):

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 70

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Purpose of Regularization:
- Express preferences in among models beyond ”minimize training error”
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 73

x

y

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 74

x

y f2
f1

The model f1 fits the training data perfectly
The model f2 has training error, but is simpler

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 75

x

y
f1 f2

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

F1 is not a linear model;
could be polynomial
regression, etc

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 76

x

y
f1 f2

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

F1 is not a linear model;
could be polynomial
regression, etc

Regularization is
important! You should
(usually) use it.

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 77

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 78

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 79

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Unnormalized log-
probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 80

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

Probabilities
must be >=

0

exp

Softmax
function

unnormalized
probabilities

Unnormalized log-
probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 81

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 82

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 83

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the
likelihood of the observed data

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 84

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 85

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Kullback–Leibler
divergence

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 86

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Cross Entropy

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 87

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 88

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min /
max possible loss Li?

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 89

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min /
max possible loss Li?

A: Min 0, max +infinity

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 90

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are
small random values,
what is the loss?

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 91

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are
small random values,
what is the loss?

A: -log(1/C)
log(10) ≈ 2.3

Recap: Three ways to think about
linear classifiers

EECS 498-007 Lecture 2 - 92

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Recap: Loss Functions quantify
preferences

EECS 498-007 Lecture 2 - 93

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Linear classifier

Recap: Loss Functions quantify
preferences

EECS 498-007 Lecture 2 - 94

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Q: How do we find the best W?

Linear classifier

Problem: Linear Classifiers
aren’t that powerful

EECS 498-007 Lecture 2 - 95

x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different

modes of a class

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 96

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature
transform

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 97

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 98

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 99

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Nonlinear
classifier in
original space!

Deep learning
attracts lots of attention.
• Google Trends

2007 2009 2011 2013 2015

How the Human Brain learns

• In the human brain, a typical neuron
collects signals from others through a host
of fine structures called dendrites.

• The neuron sends out spikes of electrical
activity through a long, thin stand known as
an axon, which splits into thousands of
branches.

• At the end of each branch, a structure
called a synapse converts the activity from
the axon into electrical effects that inhibit
or excite activity in the connected neurons.

Our brains are made of
Neurons

EECS 498-007 Lecture 2 - 102

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Firing rate is a
nonlinear function
of inputs

EECS 498-007 Lecture 2 - 103

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Biological Neuron
Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

A Neuron Model

• When a neuron receives excitatory input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity down its axon. Learning
occurs by changing the effectiveness of the synapses so that the influence of
one neuron on another changes.

• We conduct these neural networks by first trying to deduce the essential
features of neurons and their interconnections.

• We then typically program a computer to simulate these features.

A Simple Neuron

• An artificial neuron is a device with many inputs and one output.
• The neuron has two modes of operation;
• the training mode and
• the using mode.

A Simple Neuron (Cont.)

• In the training mode, the neuron can be trained to fire (or not), for
particular input patterns.

• In the using mode, when a taught input pattern is detected at the input,
its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is
used to determine whether to fire or not.

• The firing rule is an important concept in neural networks and accounts
for their high flexibility. A firing rule determines how one calculates
whether a neuron should fire for any input pattern. It relates to all the
input patterns, not only the ones on which the node was trained on
previously.

Part I:
Introduction of
Deep Learning

What people already knew in 1980s

Example Application

• Handwriting Digit Recognition

Machine “2”

Handwriting Digit Recognition

Input Output

16 x 16 = 256

1x

2x

256x
…

…

Ink → 1
No ink → 0

…
…

y1

y2

y10

Each dimension represents
the confidence of a digit.

is 1

is 2

is 0

…
…

0.1

0.7

0.2

The image
is “2”

Example Application

• Handwriting Digit Recognition

Machine “2”

1x

2x

256x

…
… …
…

y1

y2

y10𝑓: 𝑅$%& → 𝑅()

In deep learning, the function 𝑓 is
represented by neural network

bwawawaz KK ++++= !2211

Element of Neural Network

𝑓: 𝑅* → 𝑅

z

1w

2w

Kw…

1a

2a

Ka

+

b

()zs

bias

a

Activation
functionweights

Neuron

Output
LayerHidden Layers

Input
Layer

Neural Network

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Deep means many hidden layers

neuron

Example of Neural Network

()zs

z
() ze
z -+
=
1
1s

Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.98

0.12

Example of Neural Network
1

-2

1

-1

1

0

4

-2

0.98

0.12

2

-1

-1

-2

3

-1

4

-1

0.86

0.11

0.62

0.83

0

0

-2

2

1

-1

Example of Neural Network
1

-2

1

-1

1

0

0.73

0.5

2

-1

-1

-2

3

-1

4

-1

0.72

0.12

0.51

0.85

0

0

-2

2

𝑓 0
0 = 0.51

0.85

Different parameters define different function

𝑓 1
−1 = 0.62

0.83
𝑓: 𝑅$ → 𝑅$

0

0

𝜎

Matrix Operation

2y

1y
1

-2

1

-1

1

0

4

-2

0.98

0.12

1
−1

1 −2
−1 1 + 1

0
0.98
0.12=

1

-1

4
−2

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x

b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Using parallel computing techniques
to speed up matrix operation

Softmax

• Softmax layer as the output layer

Ordinary Layer

()11 zy s=

()22 zy s=

()33 zy s=

1z

2z

3z

s

s

s

In general, the output of
network can be any value.

May not be easy to interpret

Softmax

• Softmax layer as the output layer

1z

2z

3z

Softmax Layer

e

e

e

1ze

2ze

3ze

+

å
=

=
3

1
1

1

j

zz jeey

å
=

3

1j

z je

÷

÷

÷

3

-3

1 2.7

20

0.05

0.88

0.12

≈0

Probability:
n 1 > 𝑦; > 0
n ∑; 𝑦; = 1

å
=

=
3

1
2

2

j

zz jeey

å
=

=
3

1
3

3

j

zz jeey

How to set network parameters

16 x 16 = 256

1x

2x

…
…

256x

…
…

……

……

……

Ink → 1
No ink → 0

…
…

y1

y2

y10

0.1

0.7

0.2

y1 has the maximum value

Set the network parameters 𝜃 such that ……

Input:

y2 has the maximum valueInput:

is 1

is 2

is 0

How to let the neural
network achieve this

Softm
ax

𝜃 = 𝑊(, 𝑏(,𝑊$, 𝑏$,⋯𝑊B, 𝑏B

Training Data

• Preparing training data: images and their labels

Using the training data to find
the network parameters.

“5” “0” “4” “1”

“3”“1”“2”“9”

Cost

1x

2x

…
…

256x

…
…

……

……

……

…
…

y1

y2

y10

Cost

0.2

0.3

0.5

“1”

…
…

1

0

0

…
…

Cost can be Euclidean distance or cross
entropy of the network output and target

Given a set of network parameters 𝜃,
each example has a cost value.

target

𝐿(𝜃)

Total Cost

x1

x2

xR

NN

NN

NN

…
…

…
…

y1

y2

yR

F𝑦(

F𝑦$

F𝑦G

𝐿(𝜃

…
…

…
…

x3 NN y3 F𝑦H

For all training data …

𝐶 𝜃 =J
KL(

G

𝐿K 𝜃

Find the network
parameters 𝜃∗ that
minimize this value

Total Cost:

How bad the network
parameters 𝜃 is on
this task

𝐿$ 𝜃

𝐿H 𝜃

𝐿G 𝜃

Gradient Descent

𝑤(

𝑤$

Assume there are only two
parameters w1 and w2 in a
network.

The colors represent the value of C. Randomly pick a
starting point 𝜃)

Compute the
negative gradient
at 𝜃)

−𝛻𝐶 𝜃)

𝜃)

−𝛻𝐶 𝜃) Times the
learning rate 𝜂

−𝜂𝛻𝐶 𝜃)
𝛻𝐶 𝜃) = 𝜕𝐶 𝜃) /𝜕𝑤(

𝜕𝐶 𝜃) /𝜕𝑤$

−𝜂𝛻𝐶 𝜃)

𝜃 = 𝑤(,𝑤$Error Surface

𝜃∗

Gradient Descent

𝑤(

𝑤$

Compute the
negative gradient
at 𝜃)

−𝛻𝐶 𝜃)

𝜃)

Times the
learning rate 𝜂

−𝜂𝛻𝐶 𝜃)

𝜃(
−𝛻𝐶 𝜃(

−𝜂𝛻𝐶 𝜃(
−𝛻𝐶 𝜃$

−𝜂𝛻𝐶 𝜃$𝜃$

Eventually, we would
reach a minima ….. Randomly pick a

starting point 𝜃)

Local Minima

• Gradient descent never guarantee global minima

𝐶

𝑤(𝑤$

Different initial
point 𝜃)

Reach different minima,
so different results

Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/

Besides local minima ……

cost

parameter space

Very slow at the
plateau

Stuck at local minima

𝛻𝐶 𝜃
= 0

Stuck at saddle point

𝛻𝐶 𝜃
= 0

𝛻𝐶 𝜃
≈ 0

Mini-batch

x1 NN

…
…

y1 F𝑦(
𝐶(

x31 NN y31 F𝑦H(
𝐶H(

x2 NN

…
…

y2 F𝑦$
𝐶$

x16 NN y16 F𝑦(&
𝐶(&

Ø Pick the 1st batch
Ø Randomly initialize 𝜃)

𝜃(← 𝜃) − 𝜂𝛻𝐶 𝜃)
Ø Pick the 2nd batch

𝜃$ ← 𝜃(− 𝜂𝛻𝐶 𝜃(

Ø Until all mini-batches
have been picked

…

one epoch

M
in

i-b
at

ch
M

in
i-b

at
ch

Repeat the above process

𝐶 = 𝐶(+ 𝐶H(+⋯

𝐶 = 𝐶$ + 𝐶(& +⋯

Backpropagation

• A network can have millions of parameters.
• Backpropagation is the way to compute the gradients

efficiently (not today)
• Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

• Many toolkits can compute the gradients automatically

Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lec
ture/Theano%20DNN.ecm.mp4/index.html

Size of Training Data

• Rule of thumb:
• the number of training examples should be at least five to ten

times the number of weights of the network.

• Other rule:

a)-(1
|W| N >

|W|= number of weights

a = expected accuracy on test
set

Training: Backprop algorithm

• The Backprop algorithm searches for weight values that minimize the
total error of the network over the set of training examples (training
set).

• Backprop consists of the repeated application of the following two
passes:

• Forward pass: in this step the network is activated on one
example and the error of (each neuron of) the output layer is
computed.

• Backward pass: in this step the network error is used for updating
the weights. Starting at the output layer, the error is propagated
backwards through the network, layer by layer. This is done by
recursively computing the local gradient of each neuron.

Back Propagation

l Back-propagation training algorithm

l Backprop adjusts the weights of the NN in order to
minimize the network total mean squared error.

Network activation
Forward Step

Error propagation
Backward Step

Part II:
Why Deep?

Universality Theorem

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Any continuous function f

M: RRf N ®

Can be realized by a network
with one hidden layer

(given enough hidden
neurons)

Why “Deep” neural network not “Fat” neural network?

Fat + Short v.s. Thin + Tall

1x 2x ……
Nx

Deep

1x 2x ……
Nx

……

Shallow

Which one is better?

The same number
of parameters

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingDon’t forget!

Preventing
Overfitting

Modify the Network
Better optimization

Strategy

Neural networks re-visited

Neural networks: without the brain stuff

(Before) Linear score function:

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: without the brain stuff

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

4

2

A

p

r

i

l

1

2

,

2

0

1

8
3072 100 10

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

4

3

A

p

r

i

l

1

2

,

2

0

1

8

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

4

4

A

p

r

i

l

1

2

,

2

0

1

8

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

4

6

A

p

r

i

l

1

2

,

2

0

1

8

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Neural networks: Architectures

Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Lecture 5 - April 17, 201841
4
7

A bit of history:

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Lecture 5 -

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

1144

A bit of history:
ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

Lecture 5 -

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

1155

Fast-forward to today: ConvNets are
everywhere

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.self-driving cars

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
5
0

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Convolutional Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
5
1

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

(First without the brain stuff)

3072
1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
5
2

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

3072
1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
5
3

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
5
4

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

3

Convolution Layer

32x32x3 image -> preserve spatial structure

width

height

32
depth

Convolution Layer
• 32x32x3 image

• 5x5x3 filter
• 32

• Convolve the filter with the image

• i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

32

3

L
e
c
t
u
r
e
5
-
1
5
5

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Convolution Layer
• 32x32x3 image

• 5x5x3 filter
• 32

• Convolve the filter with the image

• i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

32

3

L
e
c
t
u
r
e
5
-
1
5
6

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

32

Convolution
Layer

32x32x3 image
5x5x3 filter

32

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

3

L
e
c
t
u
r
e
5
-
1
5
7

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

32

Convolution
Layer

32x32x3 image
5x5x3 filter

32

convolve (slide) over all
spatial locations

activation map

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

3 1

L
e
c
t
u
r
e
5
-
1
5
8

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

28

28

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018Lecture 5 - 33

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
6
0

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
6
1

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
6
2

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

….

10

24

24

Preview [Zeiler and Fergus 2013]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

Preview

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

one filter =>
one activation map

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
6
5

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

preview:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

The brain/neuron view of CONV Layer

32x32x3 image
5x5x3 filter

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3

L
e
c
t
u
r
e
5
-
1
6
7

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

The brain/neuron view of CONV Layer

32x32x3 image
5x5x3 filter

32

It’s just a neuron with local
connectivity...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3

L
e
c
t
u
r
e
5
-
1
6
8

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
6
9

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

28

The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume5

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
7
0

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Each neuron
looks at the full
input volume

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
7
1

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

two more layers to go: POOL/FC

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
7
3

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

- makes the representations smaller and more manageable
- operates over each activation map independently:

Pooling layer

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
7
4

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

6 8

3 4

MAX POOLING

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

Summary

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
7
6

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GoogLeNet

challenge this paradigm

