Deep Learning Tutorial

Courtesy of Hung-vi Lee



Machine Learning Basics

Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed

Labeled Data algorithm

Training

Prediction

2 Learned model

Methods that can learn from and make predictions on data



Types of Learning

Supervised: Learning with a set
Example: email classification with already labeled emails

Unsupervised: Discover in data
Example: cluster similar documents based on text

Reinforcement learning: learn to based on
Example: learn to play Go, reward: win or lose
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Classification Regression Clustering

Anomaly Detection
Sequence labeling

http://mbjoseph.github.io/2013/11/27/measure.html



ML vs. Deep Learning

Most machine learning methods work well because of human-designed
representations and input features
ML becomes just optimizing weights to best make a final prediction

Machine Learning in Practice

AN

Describing your data with
features a computer can
understand

Learning
algorithm

|
Domain specific, requires Ph.D.
level talent

J \_'_I
Optimizing the
weights on features

Feature NER
Current Word v
Previous Word v
Next Word v
Current Word Character n-gram all
Current POS Tag v
Surrounding POS Tag Sequence v
Current Word Shape v
Surrounding Word Shape Sequence v
Presence of Word in Left Window | size 4
Presence of Word in Right Window | size 4



What is Deep Learning (DL) ?

A machine learning subfield of learning representations of data. Exceptional effective
at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using
a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond
in useful ways.

Machine Learning

o s 37 IR

Input Feature extraction Classification Output

Deep Learning

o — 331 - I

Input Feature extraction + Classification Output

https.//www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png




Traditional and deep learning

Richard Szeliski

Hand-crafted

Hand-crafted

Input . : Output
P teatures algorithm I
(a) Traditional vision pipeline

Hand-crafted Machine
Input o : Output
teatures learning -
(b) Classic machine learning pipeline
Learned Machine
Input > : »  Output
features « - ] Learning « - |

(c) Deep learning pipeline

UW CSE 576 - Deep Neural Networks




Why is DL useful?

o Manually designed features are often , and take a
and validate
o Learned Features are , to learn
o Deep learning provides a very , (almost?) , learnable framework for

representing world, visual and linguistic information.
o Can learn both unsupervised and supervised

o Effective joint system learning

o Utilize large amounts of training data

Interest over time Google Trends

® deep learning @ machine learning

In ~2010 DL started outperforming other
ML techniques
first in speech and vision, then NLP
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Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

v Nikita.is
licensed under CC-BY 2,


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

The Problem: Semantic Gap

his image by Nikita_is

licen

sed under CC-BY 2.0
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What the computer sees

An image is just a big grid of

numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

V. [[105 112 108 111 104 99 166 99 96 103 112 119 104 97 93 87]

[99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94]

61 69 84]]

All pixels change when
the camera moves!

This image by Nikita_is
licensed under CC-BY 2.0


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: lllumination

This image_is CC0 1.0 This image_js CC0 1.0_| This image s CCO 1.0 This image_is CC0 1.0


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

is

Ihis Imagey Umberto Salvacnin This image by Umberto Salvagnin This image 'y sare bear,
is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 licensed under CC-BY 2.0

IS

This image by Tom Thai.
licensed under CC-BY 2.0


https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

L L . . . Ihis image by jonsson.is licensed
This image js CC0 1.0_public domain This image_js CCQ 1.0_public domain under CC-BY 2.0


https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image_is CC0 1.0_public domain This image_js CCO 1.0_public domain


https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image js CC0 1.0 public domain


http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Linear Classification
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50,000 training images
each image is 32x32x3

10,000 test images.



Parametric Approach

Image

>

- f(x,W)

Array of 32x32x3 numbers T

(3072 numbers total) VV
parameters

or weights

10 numbers giving
class scores
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Parametric Approach: Linear Classifier

f(x,W) = WXx
10 numbers givin
> f(x,W) - JVIng
vy class scores
Array of 32x32x3 numbers T
(3072 numbers total) VV
parameters

or weights



Parametric Approach: Linear Classifier

3072x1
|mage f(X’W) = WE
L) 10x1 10x3072 .
- f(x,W) > 10 numbers giving

class scores

Array of 32x32x3 numbers T

(3072 numbers total) VV

parameters
or weights



Parametric Approach: Linear Classifier

10_7211
Image f(XaW) =+ D | 10x1

) 10x1 10x3072 .
> f(x,W) o 10 numbers giving
&) T class scores

Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights




gExampIe with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

v
56
\&&34’ 0.2 | -05| 0.1 | 2.0 1.1 -96.8 | Cat score
ﬂf?é”b Lo 231
71 15 | 1.3 | 211 | 0.0 +| 32 | = | 4379 | Dogscore
g, N W/ 24
s 0 (025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2




Example for 2x2 image, 3 classes
(cat/dog/ship)

Stretch pixels into column W) - W s b
‘ 56
\ Y-
i 1A 24%
ﬁ}{% 231
(7 Ao
F 25 / y
_fa . 3
Input image :
(2,2)

(4,)



Example for 2x2 image, 3 classes
(cat/dog/ship)

Stretch pixels into column f(x,W) = Wx + b
A J
56
\ -y 02 | -05 | 0.1 | 2.0 1.1 -96.8
e 1
dﬂ"-“.’;}iﬂim 231
B o 15 | 1.3 | 21 | 0.0 4| 32 | = | 4379
24 %r"\'25 -
‘f‘ e v 24
S 0 |025| 02 | -03 -1.2 61.95
Input image
(2,2) ’
’ W 3.4 o b (3))
4,

(3,)



Linear Classifier: Algebraic
Viewpoint

Stretch pixels into column f(x,W) = Wx + b
A J
56
Ny 7 3'4 02 | -05 | 01 | 20 1.1 -96.8
méﬁ.cp i, 231
B 1.5 | 1.3 | 21 | 0.0 4| 32 | = | 4379
24 2 —
B 2 S 24
o 0 [025| 02 | -0.3 -1.2 61.95
Input image
(2,2) ’
’ W 3.4 o b (3))
4,

(3,)



Linear Classifier: Bias Trick

Add extra one to data vector;
bias is absorbed into last

_ _ column of weight matrix
Stretch pixels into column

56
\‘,,‘ -y 02 | 05| 01 | 20 | 11 -96.8

&_G;L}%M 231
B 15 | 1.3 | 21 | 0.0 | 3.2 — | 4379

24 Y s 24
Ir;put image 0 |025| 02 | -03] -1.2 : 61.95
(2,2) W G5 3,

1 | (5)




_inear Classifier: Predictions are
inear!

f(x, W) =Wx (ignore bias)

f(cx, W) = W(cx) =c * f(x, W)



_inear Classifier: Predictions are
inear!

f(x, W) =Wx (ignore bias)

f(cx, W) = W(cx) =c * f(x, W)

Scores 0.5 * Imag 0.5 * Scores
-96.8 " -48.4
437.8 218.9
62.0 31.0




Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

Stretch pixels into column

56
“,"‘_,231 02 | 05| 01 | 20 1.1 -96.8
f 1723y
bl o~ 231
Y= 15 | 1.3 | 21 | 0.0 4|32 | = | 4379
ZA 2 =
A 24
— 0 |025| 02 | -03 -1.2 61.95
Input image
(2,2) ’
’ W 6.9 b (3)

(3)



Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

Stretch pixels into column

56

\ bsd 02 | 05| 01 | 2.0
adVomt 231

p L 15 | 1.3 | 21 | 0.0
A 24

o 0 (025 02 | 03
Input image )

(2,2)

W 3.9

1.1 -96.8
3.2 437.9
1.2 61.95
b (3)

(3)

b

J,.g (7234
Y=
24 | 2.
? L' g
v V} v
0.2 -0.5 1.5 13 0 .25
0.1 2.0 2.1 0.0 0.2 -0.3
1.1 3.2 -1.2
-96.8 437.9 61.95




Interpreting an Lin
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Interpreting an Linear Classifier

\/ichial \/iewnnint

airplane 5 S 1o¢* 0 Bl = 5 1 il

automobile [ %5 E B8 0 S IV 5 5

wa SY R ST i

cat !.u@gung 0.2 -0.5 15 1.3 0 25
deer [ il o B L S G 6 w L |
v  BEREFHEEAN ot |20 | |2a]o0| |0z |3
g BN a®~EEE 1 : 1

horse “.E!E b 1.1 3.2 12

ship | R 6 e e ! 1 1

truck ‘-:‘n‘.?‘ﬁ -96.8 437.9 61.95

horse

plane car




Interpreting an Linear Classifier:
Visual Viewpoint

Linear classifier has one

“template” per |
categeor 02 | -0.5 1.5 | 1.3 0o | .25
gory W

01 | 2.0 2.1 | 0.0 02 | -03

| | |

b 1.1 3.2 1.2

| | |

-96.8 437.9 61.95

plane car berd cat deer dog frog horse ship truck




Interpreting an Linear Classifier:

Visual Viewpoint

Linear classifier has one
“template” per
category

A single template cannot capture
multiple modes of the data

e.g. horse template has 2 heads!

0.2 | -0.5

0.1 2.0

|

1.1

!

-96.8

l

437.9

61.95

plane car bird cat deer dog frog horse ship truck
-
- "




Interpreting a Linear Classifier:

Geometric Viewpoint

Airplane
Score

Classifie Deer Score

I score

Car Score

/

Value of pixel (15, 8, 0)

f(x, W) =Wx+b

\“ ¥

Array of 32x32x3 numbers
(3072 numbers total)



Interpreting a Linear Classifier:
Geometric Viewpoint

Pixel
(11, 11, 0)

Car score
increases
this way

Pixel
(15, 8, 0)

Array of 32x32x3 numbers
(3072 numbers total)



Interpreting a Linear Classifier: Geometric Viewpoint

4
=

»

=

"". f(x, W) = Wx + b

car classifier

airplane classifier !g

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Catimage by Nikita_is licensed un

der

-BY 2,


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard Cases for a Linear Classifier

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1<=L2norm<=2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else




Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

S

0.2 .5 01 | 2.0 n -96.8 | Cat score
"
15 [ 1.3 | 21 | 0.0 n + m = | 437.9 | Dog score
0 [025| 02 |-0.3 n m 61.95 | Ship score

Visual Viewpoint

One template
per class

plane car bird cat deer
dog frog horse ship truck

Geometric Viewpoint

Hyperplanes
cutting up space




So Far: Defined a linear score
function F(x,W) = Wx + b

o

Given a W, we can
compute class scores

R— ~3.45 ~0.51 3.42 for an image x.
automobile -8.87 6.04 4.64

bird 0.09 5.31 2.65

it 2.9 ~4.22 5.1 But how can we
deer 4.48 -4.19 2.64 actually choose a
dog 8.02 3.58 5.55

frog 3.78 4.49 ~4.34 good W?

horse 1.06 -4 .37 -1.5

ship -0.36 ~2.09 ~4.79

truck -0.72 -2.93 6.14


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Choosing a good W

f(x,W) = Wx + b
TODO:
1. Use a loss function to

quantify how good a
value of W is

airplane
automobile

bird

cat

: 4.48 —4-19 2. 64 2. Find a W that minimizes
og 8.02 3.58 5.55 .

frog 3.78 4.49 _4.34 the loss function

horse 1.06 ~4.37 1.5 (optimization)

ship -0.306 -2.09 -4.79

truck -0.72 -2.93 6.14



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

(i, vi) fV:1

Where I; . is image and
Y; is (integer) label



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

(i, vi) fV:1

Where I; . is image and
Y; is (integer) label

Loss for a single example is

Li(f(zi, W), y:)



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

{(xzvyZ) ol =1

Where I; . is image and
Y; is (integer) label

Loss for a single example is

Li(f(zi, W), y:)

Loss for the dataset is average of
per-example losses:

ZL 3727 ) yZ)



Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for
correct class




Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for
correct class

/!
Highest score

among other
classes



Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss o ;
Hinge Loss

Score for

| correct class

/"
Highest score “Margin”

among other
classes




Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss .
“Hinge Loss”
Score for
| correct class
/"
Highest score “Margin”

among other

classes

Given an example (332" y’é)
(Z; isimage, Y; is label)

Let s = f(zi, W) be scores

Then the SVM loss has the form:
Li =), max(0,s; — sy, + 1)



Regularization: Beyond Training
Error

Data loss: Model predictions
should match training data



Regularization: Beyond Training
Error

N
1
L(W) = N Z Li(f(z:, W), y;) + AR(W)
1=1
L J
~ W_/
Data loss: Model predictions Regularization: Prevent the model

should match training data from doing too well on training data



Regularization: Beyond Training
Error

N
1 .
L(W) = — E Li(f(x;, W), y;) + AR(W) )\ = regularization strength

N “4 - (hyperparameter)
1=

. J W_J

Y
Data loss: Model predictions Regularization: Prevent the model

should match training data from doing too well on training data



Regularization: Beyond Training
Error

1 N

L(W)=— Z Li(f(x;, W), y;) + AR(W) )\ = regularization strength

N “ - * (hyperparameter)
—

. J W_J
Y
Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Simple examples More complex:
L2 regularization: R(W) =>_,.>, W,f,l Dropout
L1 regularization: R(W) = >, >, |Wk] Batch normalization

Elasticnet (L1 +L2): R(W)=>_, ZlﬁW,ﬁl + |Wky| Cutout, Mixup, Stochastic depth, etc...



Regularization: Beyond Training
Error

N
1 L
L(W) = — E Li(f(x;, W), y;) + AR(W) )\ = regularization strength
N <4 - (hyperparameter)
1=
N J W_J
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Purpose of Regularization:
- Express preferences in among models beyond “minimize training error”

- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature



Regularization: Prefer Simpler
Models




Regularization: Prefer Simpler
Models

The model f, fits the training data perfectly
The model f, has training error, but is simpler



Regularization: Prefer Simpler
Models

F1 is not a linear model;
could be polynomial
regression, etc

Regularization pushes against fitting the data
too well so we don’t fit noise in the data



Regularization: Prefer Simpler
Models

Regularization is
important! You should
(usually) use it.

F1 is not a linear model;
could be polynomial
regression, etc

Regularization pushes against fitting the data
too well so we don’t fit noise in the data



Cross-Entropy Loss (Multinomial
Logistic Regression)

Want to interpret raw classifier scores as probabilities
e T

cat 3.2
car 5.1
frog -1.7



Cross-Entropy Loss (Multinomial
Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . _ — 5.y — —€* | Softmax
s=flzs W) |PE =kX=a) 2| function

o
A 4

cat 3.2
car 5.1
frog -1.7



Cross-Entropy Loss (Multinomial
LOgIStIC I&ﬁlgto n erpret ra)/v classifier scores as probabilities

cat
car

frog

3.2
5.1
-1.7

Unnormalized log-
probabilities / logits

&= Jlaa W)

PY =& X —g3) =

D€’

Softmax
function



Cross-Entropy Loss (Multinomial
LOgIStIC I&ﬁlgto n erpret ra)/v classifier scores as probabilities

cat
car

frog

5.1
-1.7

& .

< oo, 5

: &
3 .2

Unnormalized log-
probabilities / logits

exp

&= Jlaa W)

Probabilities
must be >=

24.5
164.

0
0.18

unnormalized

probabilities

PY =& X —g3) =

> €7

Softmax
function



Cross-Entropy Loss (Multinomial
LOgIStIC I&ﬁlgto n erpret rz)/v classifier scores as probabilities

cat
car

frog

5.1
-1.7

- g,
3 .2

Unnormalized log-
probabilities / logits

exp

probabilities

g=FlazW) P =F&X=ta)= i’;}
Probabilities Probabilities
must be >= must sum to 1
24.5 0.13
164, normalize
0 - | 0.87
0.18 0.00
unnormalized probabilities

Softmax
function



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret rz)/v classifier scores as probabilities
PY =& X —g3) =

cat
car

frog

5.1
-1.7

3.2

Unnormalized log-
probabilities / logits

exp

probabilities

> €7

Softmax
function

&= Jlaa W)
Probabilities Probabilities
must be >= must sum to 1

24.5 0.13
164, normalize
o == 0.87
0.18 0.00
unnormalized probabilities

L; = —log P(Y = yi| X = z;)
L. =-log(0.13)
=2.04




Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret ra)/v classifier scores as probabilities

cat
car

frog

3.2
5.1
-1.7

Unnormalized log-
probabilities / logits

Softmax
function

s = fles; W) |P¥ =
Probabilities Probabilities
must be >= must sum to 1

24.5 0.13
exp 164_ normalize
0.18 0.00
unnormalized probabilities

probabilities

Bl —ity) = iia
L; = —log P(Y = yi| X = z;)
L. =-log(0.13)
=2.04

Maximum Likelihood Estimation
Choose weights to maximize the
likelihood of the observed data




Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret rz)/v classifier scores as probabilities

- e | Softmax
8= flzs W) [P =KX ==)= 2| function

mustbese mustaum to 111 = ~1EP(Y = 4|X = =)

cat 24.5 0.13 |- Compare <[ 1.00
exp 164. normalize

car 51 |—» 0 = | 0.87 0.00

frog | -1.7 0.18 0.00 0.00

Unnormalized log- unnormalized Correct

probabilities

probabilities / logits probabilities probs



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret rz)/v classifier scores as probabilities
' s= f(zi; W) |P(Y =k|X =a;) = <= Softmax

... — i€ function

ST U metamion L=~ log P(Y =yl X = 2)

cat | 3.2 24.5 0.13 |+ Compare <=|1.00
car | 5.1 |— 1%4‘ =" 0.87 | ibadcleBler 10,00
frog | -1.7 0.18 0.00 | Pxx(PIQ) = |0.00
ovabies logis  probabiliies  Probebilies 3 P(y)log oy o



Cross-Entropy Loss (Multinomial
Logistic Regression)

Want to interpret raw classifier scores as probabilities

_ . _ — 5.y — —€* | Softmax
s = f(zi W) |\P(Y = kX =2) 2’| function

ST U metamion L=~ log P(Y =yl X = 2)
cat | 3.2 24.5 0.13 |- Compare <[ 1.00
exp 164. normalize
car 5.1 |=—> 0 —p | 0.87 Cross Entropy 0.00
frog | -1.7 0.18 0.00 | H(P.Q) = 0.00
Unnormalized log-  unnormalized srobabilities H(p) + Dk (P||Q) Correct

probabilities / logits probabilities probs



Cross-Entropy Loss (Multinomial
Logistic Regression)

Want to interpret raw classifier scores as probabilities
s= f(zi; W) |P(Y =k|X =a;) = <= Softmax

2i¢’| function
Maximize probability of correct class Putting it all together:
Syz-
Li= —log P(Y =yl X = 2) L = — log(52%;)
J



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret ra)/\/ classifier scores as probabilities
: s= f(zi; W) |P(Y =k|X =a;) = <= Softmax

2’| function
'§8. " | Maximize probability of correct class Putting it all together:
e — B B e . Vi
cat 32 Li=-leP=wuld==z) I, ——log(z =7)

car 5.1
Q: What is the min /
frog -1.7 max possible loss L?



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret ra)/\/ classifier scores as probabilities

- et | Softmax
s = f(zs W) R Ry = 2| function

o Maximize probability of correct class Putting it all together:

Li = —log P(Y = yi|X =zi) [, = — log( zsta)

car 5.1

frog -1.7 max possible loss L?

: What is the min
Q / A: Min 0, max +infinity



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret ra)/\/ classifier scores as probabilities
o s = f(zi; W) P(Y = k| X = ;) = <=~ Softmax

2’| function
'§8. " | Maximize probability of correct class Putting it all together:
L; = —log P(Y = 4| X = = 5. =
cat 3.2 Li=-leP =y ) Li = log( %)

car 5.1

Q: If all scores are
frog -1.7 small random values,
what is the loss?



Cross-Entropy Loss (Multinomial

LOgIStIC I&ﬁlgto N erpret ra)/\/ classifier scores as probabilities
o s = f(zs; W) P(Y = k|X = z;) = £~ Softmax

25 ¢’ function
. Maximize probability of correct class Putting it all together:
E— o 2 oy . Syz

car 5.1

Q: If all scores are
frog -1.7 small random values,
what is the loss?

A: -log(1/C)
log(10) =



Algebraic Viewpoint

f(x,W) = Wx

Stretch pixel
02 | -05| 01 | 20 n n -96.8 | Cat score
"
15 [ 1.3 | 21 | 0.0 n + m = | 437.9 | Dog score
0 |025| 02 | -0.3 n m 61.95 | Ship score

Visual Viewpoint

One template
per class

Recap: Three ways to think about
inear classifiers

Geometric Viewpoint

Hyperplanes
cutting up space




Recap: Loss Functions quantity
preferences

We have some dataset of (X, y)
We have a score function: s= f(zg; W) =Wz

We have a loss function: ) .
Linear classifier

Li —2 log( e’ ) Softmax

Zj eSj SVM regularization loss
Li =Y., max(0,8; — 8y. +1) |V scorenm E
} ’ J yz score fum,tnon; - 3
J#yz e f(mz,W)I data | . I
1 N -] [}
L= N Zizl L; + R(W) Fullloss z’
F




Recap: Loss Functions quantity
preferences

° : ?
We have some dataset of (x,y) & MOW do we find the best W:

We have a score function: s= f(zg; W) =Wz

We have a loss function: ) .
Linear classifier

Li —2 log( e’ ) Softmax

Zj eSj SVM regularization loss
Lz — . Imax O S; — Sy. + ]. W score function 3
Z.]#yz (  Banie Yi ) > f(mz,W)I dataloss
1 N | ‘
1= ~ Zz’:l L; + R(W) Fullloss z’
.




Problem: Linear Classifiers
aren’t that powerful

Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different
® modes of a class

@ 0.0
(@) plane car bird cat deer
X © ﬂ ®
e |© o0
@ (©) dog frog horse ship truck
1° NENDS




One solution: Feature
Transforms

Original space

Yy
o r= (x2 + y2)1/2
@) _ )
OO ° 0 = tan'i(y/x)
© ojco o
O ® ﬂ
X e |9 g0 Feature

|0 transform




One solution: Feature
Transforms

Original space Feature space
5, ®© @
Y 2 2\1/2 OO
° r=(x2+y)v ° o
e | ° 0 = tanl(y/x) ®
© o)
@ 0.0
©® © ﬂ O (@]
s ——
@ ® Feature ® °
©]|0 transform O
© & @ OO
© o)




One solution: Feature
Transforms

Original space Feature space
6, @ | @
Y 2 2\1/2 Oo
o r=(x?+y?) ° o
e | ° 0 = tanl(y/x) ®
© o)
@ 0.0
©® © ﬂ O (@]
s — s
@ olo ® Featfure ® °
transtorm
q O O C())O
© o)

Linear classifier
in feature space



One solution: Feature

Transforms

Original space

Nonlinear
classifier in
original space!

r= (X2 + y2)1/2
0 = tan'i(y/x)

ﬂ

Feature
transform

h

Feature space
5] @

r

Linear classifier
in feature space

o '0‘0'1‘ 090%"



Deep learning
attracts lots of attention.

* Google Trends

2007 2009 2011 2013 2015



How the Human Brain learns

—

Cell body

Nucleus

Dendrites

* In the human brain, a thlcaI neuron
?I ects signals from others through a host
fine structures called dendrites.

* The neuron sends out spikes of electrical

_ activity through a long, thin stand known as

ferminal an axon which splits mto thousands of
branches.

Dendrite . Att g end of each branch, a structure

ca led a synapse converts the activity from
Cell Body the axon mto electrical effects that inhibit
(Soma) or excite activity in the connected neurons.



Our brains are made of
Neurons

/g \
- \ Axon / —

'
' ‘ \ Impulses carried

™~

Presynaptic
terminal

.

Synapse

‘ Cell away from cell body
/ body . N .
Impulses Firing rate is a |
carried toward y nonlinear function
Dendrite ' of inputs

cell body



Biological Neuron presynaptic

dendrite terminal

Artificial Neuron

input layer

wO }UO hidden layer 1 hidden layer 2
*@® synapse

axon from a neuron
WoIo

cell body

f(Zw,—_:nz-er)
Zwia:i +b i :

output axon

activation
function

w1

Y

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

A Neuron Model

* When a neuron receives excitatory input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity down its axon. Learning

occurs by changing the effectiveness of the synapses so that the influence of
one neuron on another changes.

Cell body

Dendrites

—
—J l T;resho:d
L 4

— . &

AE e

— ’ Axon
S Summation

* We conduct these neural networks by first trying to deduce the essential
features of neurons and their interconnections.

* We then typically program a computer to simulate these features.



A Simple Neuron

1 TEACH fUSE

X2

INPUTS o OUTPUT
"n : /

TEACHING INPUT

An artificial neuron is a device with many inputs and one output.

The neuron has two modes of operation;

the training mode and

the using mode.



A Simple Neuron (Cont.)

* In the training mode, the neuron can be trained to fire (or not), for
particular input patterns.

* In the using mode, when a taught input pattern is detected at the input,
its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is
used to determine whether to fire or not.

* The firing rule is an important concept in neural networks and accounts
for their high flexibility. A firing rule determines how one calculates
whether a neuron should fire for any input pattern. It relates to all the
input patterns, not only the ones on which the node was trained on
previously.



Part I:
Introduction of
Deep Learning

What people already knew in 1980s



Example Application

* Handwriting Digit Recognition

» ”2”




Handwriting Digit Recognition

Input Output
smmEE TN ‘ ‘
EEEEEET  Emam The image
= | 1_;i:§::;;':::;::- : is “2”
i “Em ‘ .
-: e e l !\/x256
16 x 16 = 256
Ink 2> 1

Each dimension represents
Noink > 0 the confidence of a digit.




Example Application

* Handwriting Digit Recognition

X, Y1

'Vz

x256:
f:R256 — R10 Y10

In deep learning, the function f is

represented by neural network



Element of Neural Network

Neuron f:R¥ - R

a, z=aw +a,w,++a,w,+b
a
2 zZ
+ = o(z) — a
a ‘ Activation
weights b function




Neural Network

neuron

Deep means many hidden layers



Example of Neural Network




Example of Neural Network

- 0.98 - - 0.86 3 . 0.62

_—
kf
>




Example of Neural Network

1 0.73 > 0.72 4 0.51
AN
2/ 1/ 1
1 0) -2
-1 0.5 -2 012 -1 0.85
1 -1 4 @:
0 0 2

S (8 Y IO () R

Different parameters define different function



Matrix Operation

1 z%j_ogs 7 T,
1 _:ZIfO. :f =f—’y2
0
d ]+ o)) = [on

Y

%)



Neural Network

Xo% W1 W2 WL BV
bl b2 bt
XI\ )& a?& az - y — yM
s( W' [x + bt )/ \
o( W2 |al + b?)

o( WLt bl

+ bt)



Neural Network

y = f(

— 0'( WL

e — Y

x2< W] \ WZ WL —yz
b? b? bt

FARFAY

X al a2 eeee I y — yM

X )

Using parallel computing techniques
to speed up matrix operation

wo( W2 ag( WY [ x|+ b')+ b2) -+ b")




Softmax

* Softmax layer as the output layer

Ordinary Layer

Z| | O —) 20(21)
In general, the output of
network can be any value.

Z,) — O — ), 20(22)

May not be easy to interpret

2, 6 —— 3, =0z,)



Softmax

* Softmax layer as the output layer

Softmax Layer

Z, e

20

Probability:.
mil> Vi > 0

m:y =1

Z 088 . /&, .
el—+—y1:el Ze]
=1
3

0.12 .
T
j=1

=() 3
° Z -
T_>y3:€Z3/ e]
j=1



How to set network parameters
6 = (W1, b, W2 b2, - WL, bt}

16 x 16 = 256

Ink > 1

Noink >0 How to let the neural VSR

network achieve this

. V> Ne & Maxin value




Training Data

* Preparing training data: images and their labels

5 “5” ‘0 “0” L"{ “4” / “1”
q “9” 3 “2” ‘ “1” 3 “3”

Using the training data to find

the network parameters.




Given a set of network parameters 6,
each example has a cost value.

Cost

Xy
v
/ .
X156

Cost can be Euclidean distance or cross
entropy of the network output and target



Total Cost

For all training data ...

>

o,
l__{
/

NN

— v c—)

L'(6)

NN

— y2~

L?(6)

NN

NN

— yRﬁ

LR(6)

_>y3~y
: LB(Q) :

NV

E | E

>
9
W

Py
“J

<

Total Cost:
R
C(0) = z L7 (6)
r=1

How bad the network

parameters @ is on
this task

Find the network

parameters 8™ that
minimize this value




Assume there are only two
parameters w; and w, in a

Gradient Descent  network

Error Surface
550015000 —— — 15.000 —290 —391500 —

The colors represent the value of C. Randomly pick a
—— starting point 8°

0 — {Wl) WZ}

Compute the
negative gradient
at °

m) -V C(6°)

— — Times the
06(90)/0W1] learning rate i

aC(0°)/ow,] mm) —nvC(6°)

2 4




Gradient Descent

Eventually, we would
Q

4 reach a minima .....

2

_nVC.(H 92_77‘76(02)

Wy 0 Z-vc?»

9].

Randomly pick a
starting point 8°

Compute the
negative gradient
at °

m) -V C(6°)

Times the
learning rate n

m) —nVC(6°)




Local Minima

* Gradient descent never guarantee global minima

o« Reach different minima,
S so different results

~, "Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/




Besides local minima ......

cost

Very slow at the
plateau
Stuck at saddle point

Stuck at local minima

: AR C) R AR (U C) B B 7 ()
i—> o ~0 _g =0 o =
parameter Space



Mini-batch

Mini-batch

Mini-batch

x1 NN —> yl? }’;]L

x3l— NN _>y31~ 5;31
C31

@ X2 NN — y2~ 5;2
CZ

wl6—s NN >y 1 qp 16
Cl6

> Randomly initialize 6°

» Pick the 15t batch
C=C'+C3 +--
01 < 0% —nvc(?

» Pick the 2" batch
C=C*+C™+-.
0% « 01 —nvCc(8Y)

» Until all mini-batches
have been picked

Repeat the above process



Backpropagation

* A network can have millions of parameters.

* Backpropagation is the way to compute the gradients
efficiently (not today)
* Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 201
5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

* Many toolkits can compute the gradients automatically

Ref: \__J
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 2015 2/Lec
ture/Theano%20DNN.ecm.mp4/index.html



Size of Training Data

e Rule of thumb:

* the number of training examples should be at least five to ten
times the number of weights of the network.

e Other rule:

| W|= number of weights

a = expected accuracy on test
set




Training: Backprop algorithm

* The Backprop algorithm searches for weight values that minimize the

total error of the network over the set of training examples (training
set).

* Backprop consists of the repeated application of the following two
passes:

* Forward pass: in this step the network is activated on one

example and the error of (each neuron of) the output layer is
computed.

e Backward pass: in this step the network error is used for updating
the weights. Starting at the output layer, the error is propagated
backwards through the network, layer by layer. This is done by
recursively computing the local gradient of each neuron.



Back Propagation

e Back-propagation training algorltm Network activation

Forward Step

Error propagation
Backward Step

e Backprop adjusts the weights of the NN in order to
minimize the network total mean squared error.



Part |l:
Why Deep?



Universality Theorem

Any continuous function f
f:R" ->R"

Can be realized by a network
with one hidden layer

. . Reference for the reason:
(glven enough hldden http://neuralnetworksandde

neurons) eplearning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall

The same number
of parameters ’
bt )

-
<Q
/;\%{’A AV

Which one is better?

Shallow Deep



Recipe for Learning

Does itdo well [y, Does itdo well | ves

on the training | =) on the test mmm)p Done!
data? data?

INO a« lNO

Bigger network ¥ .” More data

( (Rocket engine) - (Rocket fuel)

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/




Recipe for Learning

Does it do well Does it do well
on the training - on the test
data?

Better optlmlzat|on
l Strategy

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Neural networks re-visited



Neural networks: without the brain stuff

(Before) Linear score function: f — W2



Neural networks: without the brain stuff

(Before) Linear score function: f — Wax
(Now) 2-layer Neural Network off = W maX(O, W1:I:)



I - R Y= S N\ VR — N e S o A > B

Neural networks: without the brain stuff
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy maX(O, WISB)

3072 _—— 100 10



I - R R = S L) 2 - el o B <> B s~

Neural networks: without the brain stuff
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy maX(O, WL’B)

X| Wi hl w2 |sg

/
3072 /1 00




I I Y= - N | VR — N e o B > B~

Neural networks: without the brain stuff

(Before) Linear score function: f — Wax

(Now) 2-layer Neural Network f — W5 maX(O, W1:I:)
or 3-layer Neural Network

f — W3 max(O, W2 maX(O, Wlﬂ?))



Activation functions

tanh

Maxout
tanh(x)

max(wi z + by, w3 x + bs)

S|gmo|d 1 Leaky RelLU
1 max(0.1z, x)
O'(SC)  14e*

RelLU ELU
max (0, x) {x 20

ae®—1) =<0




I e R = I S L) 2 T el o o B < B s

Neural networks: Architectures

output layer
input layer input layer

hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”

hidden layer 1

J
A

output layer

I
a0
0§

hidden layer 2

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers



Next: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsampllng



Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

A bit of history:

Image Maps

K; = N \\\

Fu ||yC

Subsa mpl

LeNet-5



rof

-

= - =

SN

o N

. A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

.
Wy
)

O Ty N . B

Max
pooling

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”



®

c = 0

.

OoOPUr = T o Y v

Fast-forward to today: ConvNets are

everywhere

Bl |

self-driving cars

Photo by Lane MclIntosh. Copyright CS231n 2017.

This image by GBPublic_PR is
licensed under CC-BY 2.0

g

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.



Convolutional Neural Networks

(First without the brain stuff)



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wz
—> — 110
3072 10 x.3072 10
weights

NPUP e T o™ o 0
—



WUr e o oY 0D

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

3072

—

Wax

10 x 3072
weights

activation

/4 10

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)




Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer
* 32x32x3 image

e 5x5x3 filter

(/

b Il
* Convolve the filter with the image

* i.e. “slide over the image spatially,
computing dot products”

32




h .
eeCO nVOl Utl on l—aye I Filters always extend the full

C . depth of the input volume

i *32x32x3 Image

u /

t

e * 5x5x3 filter

5 /7

2 « 3D

a I o

£ » Convolve the filter with the image

5 * i.e. “slide over the image spatially,
- computing dot products”




. Convolution

_— 32x32x3 image

V
——0

- Layer
t
u
t
é =
5 @
4
5
7
32

5x5x3 filter w

~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz+b



. Convolution

C La ye r _ activation map
_— 32x32x3 image

5x5x3 filter /
2
@>@ .

convolve (slide) over all

spatial locations
32 28

P UT = T o v O




A Convolution Layer consider a second, green filter
:|

_— 32x32x3 image activation maps

| 5x5x3 filter %
_1 V
l @/ 28

convolve (slide) over all

: spatial locations
8
32 / 28




For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!



PoY = tTh gy OB P

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

CONYV,
RelLU
e.g. 6
5x5x3
filters

28

28



Neoy =2 "™ 01 o™ o 0B &

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
5x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
9x5x6
filters

10

24

CONV,
RelLU

24



Preview [Zeller and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

Low-level Mid-level High-level Linearly
> > » separable >
features features features e
classifier

VGG-16 Convi_1



Linearly
separable
classifier

Preview Low-level | | Mid-level | High-level

features | features | features

A 4

VGG-16 Convi1_1

Retinal ganglion cell LGN and V1
receptive fields simple cells Complex cells:
Response to light
e orientation and movement

Hypercomplex cells:
response to movement
with an end point

N

No response Response
(end point)




Uror e ™ot oY o o B

=
-

CINEESONIITANAR

one filter =>
one activation map

Activations:

Figure copyright Andrej Karpathy.

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

fleylegleyl = Y, Y, fln,n glx—n.y—n,]

ny=—c0 Ny =—00 T

elementwise multiplication and sum of
a filter and the signal (image)



preview:

RELU RELU RELU RELU

RELU RELU
CONV

|

"o

FC

TS

L

o

|

5 R A

5

&Y i

[

A EE R TR B

QML
W W0

LRI BEERS

car |
ftruck

ﬁplane

Bhip

]ﬁbrse




Pore thor oo 0B

The brain/neuron view of CONV Layer

__— 32x32x3 image

5x5x3 filter
2

=

32 the result of taking a dot product between

the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)



ooy = T UMY OB P

The brain/neuron view of CONV Layer

__— 32x32x3 image

5x5x3 filter

V
——0

N

1 number:

2\ wo

@ synapse
axon from a neuron
WoTo

cell body

i (Zwmi - b)
Zwixi +b :

output axon

activation
function

It's just a neuron with local
connectivity...

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)




o*or e ™o oY o 0B~

The brain/neuron view of CONV Layer

32

32

An activation map is a 28x28 sheet of neuron
outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”



& N VA BN o = AR S N

The brain/neuron view of CONV Layer

32

32

O OO0

28

28

E.g. with 5 filters,
CONV layer consists of

neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume



i N S L Co e = e S I - I

32x32x3 image -> stretch to 3072 x 1

input

3072

—

Wax

10 x 3072
weights

Each neuron
looks at the full
input volume

activation

/4 10

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)




two more layers to go: POOL/FC
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Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

—

l

—

224

— 112
downsampling
112




MAX POOLING

Single depth slice

1112 | 4

max pool with 2x2 filters
5106 |7 |8 and stride 2
31210
112 | 3| 4




Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ELU RELU RELU RELU RELU RELU
CONVlCONV CONV CONVl CONVlCONVl

}
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Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm



