
Deep Learning Tutorial

Courtesy of Hung-yi Lee

Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed

Methods that can learn from and make predictions on data

Labeled Data

Data

Machine Learning
algorithm

Learned model Prediction

Training
Prediction

Machine Learning Basics

Regression

Supervised: Learning with a labeled training set
Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data
Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward
Example: learn to play Go, reward: win or lose

Types of Learning

class A

class A

Classification

Anomaly Detection
Sequence labeling
…

Clustering

http://mbjoseph.github.io/2013/11/27/measure.html

Most machine learning methods work well because of human-designed
representations and input features
ML becomes just optimizing weights to best make a final prediction

ML vs. Deep Learning

A machine learning subfield of learning representations of data. Exceptional effective
at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of) representation by using
a hierarchy of multiple layers
If you provide the system tons of information, it begins to understand it and respond
in useful ways.

What is Deep Learning (DL) ?

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Traditional and deep learning

Richard Szeliski UW CSE 576 - Deep Neural Networks 6

o Manually designed features are often over-specified, incomplete and take a long time
to design and validate

o Learned Features are easy to adapt, fast to learn
o Deep learning provides a very flexible, (almost?) universal, learnable framework for

representing world, visual and linguistic information.
o Can learn both unsupervised and supervised
o Effective end-to-end joint system learning
o Utilize large amounts of training data

Why is DL useful?

In ~2010 DL started outperforming other
ML techniques
first in speech and vision, then NLP

Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

cat

This image by Nikita is
licensed under CC-BY2.0

Lecture 2 - 8

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

This image by Nikita is
licensed under CC-BY2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

Lecture 2 - 9

e.g. 800 x 600 x 3
(3 channels RGB)

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

All pixels change when
the camera moves!

Lecture 2 - 1
0

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Illumination

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Lecture 2 -

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Lecture 2 -

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Lecture 2 -

1

3

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Lecture 2 -

1

4

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Lecture 2 -

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Linear Classification

Lecture 2 -

Recall CIFAR10

50,000 training images
each image is 32x32x3

10,000 test images.

Lecture 2 -

1

7

1

8

Parametric Approach

Image

f(x,W) 10 numbers giving
class scores

Lecture 2 -

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving
class scores

u

n

g

Lecture 2 -

1

9

0

1

8

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Parametric Approach: Linear Classifier

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

3072x1
f(x,W) = Wx

10x1 10x3072
f(x,W)

Lecture 2 -

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b

Parametric Approach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Lecture 2 -

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

n

g

Lecture 2 -

2

2

1.1

3.2

-1.2

-96.8

437.9

61.95

+ =
Cat score

Dog score

Ship score

b

Example for 2x2 image, 3 classes
(cat/dog/ship)

EECS 498-007 Lecture 2 - 23

Input image
(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

(4,)

f(x,W) = Wx + b

Example for 2x2 image, 3 classes
(cat/dog/ship)

EECS 498-007 Lecture 2 - 24

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b

Linear Classifier: Algebraic
Viewpoint

EECS 498-007 Lecture 2 - 25

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b

Linear Classifier: Bias Trick

EECS 498-007 Lecture 2 - 26

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

-96.8

437.9

61.95

=

(5,)
(3, 5) (3,)

1

Add extra one to data vector;
bias is absorbed into last
column of weight matrix

Linear Classifier: Predictions are
Linear!

EECS 498-007 Lecture 2 - 27

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)

Linear Classifier: Predictions are
Linear!

EECS 498-007 Lecture 2 - 28

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores

-96.8

437.8

62.0

-48.4

218.9

31.0

0.5 * Scores

EECS 498-007 Lecture 2 - 29

Interpreting a Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

f(x,W) = Wx + b

Algebraic Viewpoint

EECS 498-007 Lecture 2 - 30

Interpreting a Linear Classifier

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

Algebraic Viewpoint

f(x,W) = Wx + b

EECS 498-007 Lecture 2 - 31

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier

EECS 498-007 Lecture 2 - 32

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

EECS 498-007 Lecture 2 - 33

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

Linear classifier has one
“template” per
category

EECS 498-007 Lecture 2 - 34

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier:
Visual Viewpoint

Linear classifier has one
“template” per
category

A single template cannot capture
multiple modes of the data

e.g. horse template has 2 heads!

Interpreting a Linear Classifier:
Geometric Viewpoint

EECS 498-007 Lecture 2 - 35

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane
Score

Car Score

Deer ScoreClassifie
r score

Interpreting a Linear Classifier:
Geometric Viewpoint

EECS 498-007 Lecture 2 - 36

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car
Score = 0

Pixel
(11, 11, 0)

Car score
increases
this way

Interpreting a Linear Classifier: Geometric Viewpoint

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 2 -

37 April 9, 2020

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard Cases for a Linear Classifier

EECS 498-007 Lecture 2 - 38

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

Linear Classifier: Three Viewpoints

EECS 498-007 Lecture 2 - 39

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

So Far: Defined a linear score
function

EECS 498-007 Lecture 2 - 40

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36

-0.72

-0.51
6.04
5.31
-4.22

-4.19
3.58
4.49

-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can
compute class scores
for an image x.

But how can we
actually choose a
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Choosing a good W

EECS 498-007 Lecture 2 - 41

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36

-0.72

-0.51
6.04
5.31
-4.22

-4.19
3.58
4.49

-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to
quantify how good a
value of W is

2. Find a W that minimizes
the loss function
(optimization)

Loss Function

EECS 498-007 Lecture 2 - 42

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Loss Function

EECS 498-007 Lecture 2 - 43

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Loss Function

EECS 498-007 Lecture 2 - 44

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss Function

EECS 498-007 Lecture 2 - 45

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Loss Function

EECS 498-007 Lecture 2 - 46

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc

Given a dataset of examples

Where is image and
is (integer) label

Loss for a single example is

Loss for the dataset is average of
per-example losses:

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 47

Loss

Score for
correct class

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 48

Loss

Score for
correct class

Highest score
among other
classes

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 49

Loss

Score for
correct class

Highest score
among other
classes

“Margin”

“Hinge Loss”

Multiclass SVM Loss
”The score of the correct class should
be higher than all the other scores”

EECS 498-007 Lecture 2 - 50

Loss

Score for
correct class

Highest score
among other
classes

“Margin”

Given an example
(is image, is label)

Let be scores

Then the SVM loss has the form:
“Hinge Loss”

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 66

Data loss: Model predictions
should match training data

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 67

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 68

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 69

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization:
L1 regularization:
Elastic net (L1 + L2):

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…

Regularization: Beyond Training
Error

EECS 498-007 Lecture 2 - 70

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Purpose of Regularization:
- Express preferences in among models beyond ”minimize training error”
- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 73

x

y

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 74

x

y f2
f1

The model f1 fits the training data perfectly
The model f2 has training error, but is simpler

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 75

x

y
f1 f2

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

F1 is not a linear model;
could be polynomial
regression, etc

Regularization: Prefer Simpler
Models

EECS 498-007 Lecture 2 - 76

x

y
f1 f2

Regularization pushes against fitting the data
too well so we don’t fit noise in the data

F1 is not a linear model;
could be polynomial
regression, etc

Regularization is
important! You should
(usually) use it.

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 77

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 78

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 79

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Unnormalized log-
probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 80

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

Probabilities
must be >=

0

exp

Softmax
function

unnormalized
probabilities

Unnormalized log-
probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 81

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 82

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 83

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the
likelihood of the observed data

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 84

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 85

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Kullback–Leibler
divergence

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 86

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.

0
0.18

0.13
0.87
0.00

Probabilities
must be >=

0

Probabilities
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00
0.00
Correct
probs

Compare

Cross Entropy

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 87

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 88

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min /
max possible loss Li?

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 89

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min /
max possible loss Li?

A: Min 0, max +infinity

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 90

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are
small random values,
what is the loss?

Cross-Entropy Loss (Multinomial
Logistic Regression)

EECS 498-007 Lecture 2 - 91

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are
small random values,
what is the loss?

A: -log(1/C)
log(10) ≈ 2.3

Recap: Three ways to think about
linear classifiers

EECS 498-007 Lecture 2 - 92

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Recap: Loss Functions quantify
preferences

EECS 498-007 Lecture 2 - 93

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Linear classifier

Recap: Loss Functions quantify
preferences

EECS 498-007 Lecture 2 - 94

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Softmax
SVM

Full loss

Q: How do we find the best W?

Linear classifier

Problem: Linear Classifiers
aren’t that powerful

EECS 498-007 Lecture 2 - 95

x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different

modes of a class

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 96

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature
transform

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 97

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 98

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

One solution: Feature
Transforms

EECS 498-007 Lecture 2 - 99

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Nonlinear
classifier in
original space!

Deep learning
attracts lots of attention.
• Google Trends

2007 2009 2011 2013 2015

How the Human Brain learns

• In the human brain, a typical neuron
collects signals from others through a host
of fine structures called dendrites.

• The neuron sends out spikes of electrical
activity through a long, thin stand known as
an axon, which splits into thousands of
branches.

• At the end of each branch, a structure
called a synapse converts the activity from
the axon into electrical effects that inhibit
or excite activity in the connected neurons.

Our brains are made of
Neurons

EECS 498-007 Lecture 2 - 102

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Firing rate is a
nonlinear function
of inputs

EECS 498-007 Lecture 2 - 103

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Biological Neuron
Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

A Neuron Model

• When a neuron receives excitatory input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity down its axon. Learning
occurs by changing the effectiveness of the synapses so that the influence of
one neuron on another changes.

• We conduct these neural networks by first trying to deduce the essential
features of neurons and their interconnections.

• We then typically program a computer to simulate these features.

A Simple Neuron

• An artificial neuron is a device with many inputs and one output.
• The neuron has two modes of operation;
• the training mode and
• the using mode.

A Simple Neuron (Cont.)

• In the training mode, the neuron can be trained to fire (or not), for
particular input patterns.

• In the using mode, when a taught input pattern is detected at the input,
its associated output becomes the current output. If the input pattern
does not belong in the taught list of input patterns, the firing rule is
used to determine whether to fire or not.

• The firing rule is an important concept in neural networks and accounts
for their high flexibility. A firing rule determines how one calculates
whether a neuron should fire for any input pattern. It relates to all the
input patterns, not only the ones on which the node was trained on
previously.

Part I:
Introduction of
Deep Learning

What people already knew in 1980s

Example Application

• Handwriting Digit Recognition

Machine “2”

Handwriting Digit Recognition

Input Output

16 x 16 = 256

1x

2x

256x
…

…

Ink → 1
No ink → 0

…
…

y1

y2

y10

Each dimension represents
the confidence of a digit.

is 1

is 2

is 0

…
…

0.1

0.7

0.2

The image
is “2”

Example Application

• Handwriting Digit Recognition

Machine “2”

1x

2x

256x

…
… …
…

y1

y2

y10𝑓: 𝑅$%& → 𝑅()

In deep learning, the function 𝑓 is
represented by neural network

bwawawaz KK ++++= !2211

Element of Neural Network

𝑓: 𝑅* → 𝑅

z

1w

2w

Kw…

1a

2a

Ka

+

b

()zs

bias

a

Activation
functionweights

Neuron

Output
LayerHidden Layers

Input
Layer

Neural Network

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Deep means many hidden layers

neuron

Example of Neural Network

()zs

z
() ze
z -+
=
1
1s

Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.98

0.12

Example of Neural Network
1

-2

1

-1

1

0

4

-2

0.98

0.12

2

-1

-1

-2

3

-1

4

-1

0.86

0.11

0.62

0.83

0

0

-2

2

1

-1

Example of Neural Network
1

-2

1

-1

1

0

0.73

0.5

2

-1

-1

-2

3

-1

4

-1

0.72

0.12

0.51

0.85

0

0

-2

2

𝑓 0
0 = 0.51

0.85

Different parameters define different function

𝑓 1
−1 = 0.62

0.83
𝑓: 𝑅$ → 𝑅$

0

0

𝜎

Matrix Operation

2y

1y
1

-2

1

-1

1

0

4

-2

0.98

0.12

1
−1

1 −2
−1 1 + 1

0
0.98
0.12=

1

-1

4
−2

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x

b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Using parallel computing techniques
to speed up matrix operation

Softmax

• Softmax layer as the output layer

Ordinary Layer

()11 zy s=

()22 zy s=

()33 zy s=

1z

2z

3z

s

s

s

In general, the output of
network can be any value.

May not be easy to interpret

Softmax

• Softmax layer as the output layer

1z

2z

3z

Softmax Layer

e

e

e

1ze

2ze

3ze

+

å
=

=
3

1
1

1

j

zz jeey

å
=

3

1j

z je

÷

÷

÷

3

-3

1 2.7

20

0.05

0.88

0.12

≈0

Probability:
n 1 > 𝑦; > 0
n ∑; 𝑦; = 1

å
=

=
3

1
2

2

j

zz jeey

å
=

=
3

1
3

3

j

zz jeey

How to set network parameters

16 x 16 = 256

1x

2x

…
…

256x

…
…

……

……

……

Ink → 1
No ink → 0

…
…

y1

y2

y10

0.1

0.7

0.2

y1 has the maximum value

Set the network parameters 𝜃 such that ……

Input:

y2 has the maximum valueInput:

is 1

is 2

is 0

How to let the neural
network achieve this

Softm
ax

𝜃 = 𝑊(, 𝑏(,𝑊$, 𝑏$,⋯𝑊B, 𝑏B

Training Data

• Preparing training data: images and their labels

Using the training data to find
the network parameters.

“5” “0” “4” “1”

“3”“1”“2”“9”

Cost

1x

2x

…
…

256x

…
…

……

……

……

…
…

y1

y2

y10

Cost

0.2

0.3

0.5

“1”

…
…

1

0

0

…
…

Cost can be Euclidean distance or cross
entropy of the network output and target

Given a set of network parameters 𝜃,
each example has a cost value.

target

𝐿(𝜃)

Total Cost

x1

x2

xR

NN

NN

NN

…
…

…
…

y1

y2

yR

F𝑦(

F𝑦$

F𝑦G

𝐿(𝜃

…
…

…
…

x3 NN y3 F𝑦H

For all training data …

𝐶 𝜃 =J
KL(

G

𝐿K 𝜃

Find the network
parameters 𝜃∗ that
minimize this value

Total Cost:

How bad the network
parameters 𝜃 is on
this task

𝐿$ 𝜃

𝐿H 𝜃

𝐿G 𝜃

Gradient Descent

𝑤(

𝑤$

Assume there are only two
parameters w1 and w2 in a
network.

The colors represent the value of C. Randomly pick a
starting point 𝜃)

Compute the
negative gradient
at 𝜃)

−𝛻𝐶 𝜃)

𝜃)

−𝛻𝐶 𝜃) Times the
learning rate 𝜂

−𝜂𝛻𝐶 𝜃)
𝛻𝐶 𝜃) = 𝜕𝐶 𝜃) /𝜕𝑤(

𝜕𝐶 𝜃) /𝜕𝑤$

−𝜂𝛻𝐶 𝜃)

𝜃 = 𝑤(,𝑤$Error Surface

𝜃∗

Gradient Descent

𝑤(

𝑤$

Compute the
negative gradient
at 𝜃)

−𝛻𝐶 𝜃)

𝜃)

Times the
learning rate 𝜂

−𝜂𝛻𝐶 𝜃)

𝜃(
−𝛻𝐶 𝜃(

−𝜂𝛻𝐶 𝜃(
−𝛻𝐶 𝜃$

−𝜂𝛻𝐶 𝜃$𝜃$

Eventually, we would
reach a minima ….. Randomly pick a

starting point 𝜃)

Local Minima

• Gradient descent never guarantee global minima

𝐶

𝑤(𝑤$

Different initial
point 𝜃)

Reach different minima,
so different results

Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/

Besides local minima ……

cost

parameter space

Very slow at the
plateau

Stuck at local minima

𝛻𝐶 𝜃
= 0

Stuck at saddle point

𝛻𝐶 𝜃
= 0

𝛻𝐶 𝜃
≈ 0

Mini-batch

x1 NN

…
…

y1 F𝑦(
𝐶(

x31 NN y31 F𝑦H(
𝐶H(

x2 NN

…
…

y2 F𝑦$
𝐶$

x16 NN y16 F𝑦(&
𝐶(&

Ø Pick the 1st batch
Ø Randomly initialize 𝜃)

𝜃(← 𝜃) − 𝜂𝛻𝐶 𝜃)
Ø Pick the 2nd batch

𝜃$ ← 𝜃(− 𝜂𝛻𝐶 𝜃(

Ø Until all mini-batches
have been picked

…

one epoch

M
in

i-b
at

ch
M

in
i-b

at
ch

Repeat the above process

𝐶 = 𝐶(+ 𝐶H(+⋯

𝐶 = 𝐶$ + 𝐶(& +⋯

Neural Networks

EECS 498-007 Lecture 2 - 130

(Before) Linear score function:

Neural Networks

EECS 498-007 Lecture 2 - 131

(Before) Linear score function:

(Now) 2-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Neural Networks

EECS 498-007 Lecture 2 - 132

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Neural Networks

EECS 498-007 Lecture 2 - 133

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Neural Networks

EECS 498-007 Lecture 2 - 134

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Element (i, j)
of W1 gives
the effect on
hi from xj

Element (i, j)
of W2 gives
the effect on
si from hj

W1 W2

Neural Networks

EECS 498-007 Lecture 2 - 135

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Element (i, j) of
W1 gives the
effect on hi from
xj

Element (i, j) of
W2 gives the
effect on si from
hj

All elements
of x affect all
elements of
h

All elements
of h affect all
elements of
sFully-connected neural network

Also “Multi-Layer Perceptron” (MLP)

Neural Networks

EECS 498-007 Lecture 2 - 136

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: One template per class

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Networks

EECS 498-007 Lecture 2 - 137

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Neural net: first layer is bank of templates;
Second layer recombines templates

W1 W2

Neural Networks

EECS 498-007 Lecture 2 - 138

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

Can use different templates to
cover multiple modes of a
class!

W1 W2

Neural Networks

EECS 498-007 Lecture 2 - 139

(Before) Linear score function:

(Now) 2-layer Neural Network

x h sInput:
3072

Hidden layer:
100

Output: 10

“Distributed representation”:
Most templates not
interpretable!

W1 W2

Deep Neural Networks

EECS 498-007 Lecture 2 - 140

x h1W1 sW6

Input
:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of
each
layer

Activation Functions

EECS 498-007 Lecture 2 - 141

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Activation Functions

EECS 498-007 Lecture 2 - 142

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

Activation Functions

EECS 498-007 Lecture 2 - 143

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Q: What happens if we build a neural
network with no activation function?

A: We end up with a linear
classifier!

Activation Functions

EECS 498-007 Lecture 2 - 144

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation Functions

EECS 498-007 Lecture 2 - 145

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good default choice
for most problems

Neural Net in <20 lines!

EECS 498-007 Lecture 2 - 146

Initialize weights
and data

Compute loss
(sigmoid activation,
L2 loss)

Compute
gradients

Stochastic
Gradient Descent
(SGD) step

Our brains are made of
Neurons

EECS 498-007 Lecture 2 - 147

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Firing rate is a
nonlinear function
of inputs

EECS 498-007 Lecture 2 - 148

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Biological Neuron
Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Setting the number of layers
and their sizes

EECS 498-007 Lecture 2 - 149

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

Summary

EECS 498-007 Lecture 2 - 151

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space

Nonlinear	classifier	
in	original	space!

Feature transform + Linear classifier
allows nonlinear decision boundaries

Feature	Extraction

training

training

10 numbers	giving	

scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	

with	deep	convolutional	neural	networks”,	NIPS	2012.

Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	
Reproduced	 with	permission.

10 numbers	giving	

scores	for	classes

Neural Networks as learnable feature transforms

Summary

EECS 498-007 Lecture 2 - 152

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From linear classifiers to
fully-connected networks

Linear classifier: One template per class

Neural networks: Many reusable templates

Backpropagation

• A network can have millions of parameters.
• Backpropagation is the way to compute the gradients

efficiently (not today)
• Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

• Many toolkits can compute the gradients automatically

Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lec
ture/Theano%20DNN.ecm.mp4/index.html

Size of Training Data

• Rule of thumb:
• the number of training examples should be at least five to ten

times the number of weights of the network.

• Other rule:

a)-(1
|W| N >

|W|= number of weights

a = expected accuracy on test
set

Training: Backprop algorithm

• The Backprop algorithm searches for weight values that minimize the
total error of the network over the set of training examples (training
set).

• Backprop consists of the repeated application of the following two
passes:

• Forward pass: in this step the network is activated on one
example and the error of (each neuron of) the output layer is
computed.

• Backward pass: in this step the network error is used for updating
the weights. Starting at the output layer, the error is propagated
backwards through the network, layer by layer. This is done by
recursively computing the local gradient of each neuron.

Back Propagation

l Back-propagation training algorithm

l Backprop adjusts the weights of the NN in order to
minimize the network total mean squared error.

Network activation
Forward Step

Error propagation
Backward Step

Problem: How to compute
gradients?

EECS 498-007 Lecture 2 - 157

If we can compute then we can learn W1 and W2

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization

(Bad) Idea: Derive
on paper

EECS 498-007 Lecture 2 - 158

Problem: What if we want to
change loss? E.g. use softmax
instead of SVM? Need to re-derive
from scratch. Not modular!

Problem: Very tedious: Lots of matrix
calculus, need lots of paper

Problem: Not feasible for very
complex models!

Better Idea: Computational
Graphs

EECS 498-007 Lecture 2 - 159

x

W

hinge
loss

R

+ L
s (scores)*

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 160

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 161

e.g. x = -2, y = 5, z = -4

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 162

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 163

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 164

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 165

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 166

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 167

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 168

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 169

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 170

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 171

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 172

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 173

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 174

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Backpropagation:
Simple Example

EECS 498-007 Lecture 2 - 175

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

2. Backward pass: Compute derivatives

Want:

Chain Rule

Local
Gradient

Upstream
Gradient

Downstream
Gradient

Part II:
Why Deep?

Universality Theorem

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Any continuous function f

M: RRf N ®

Can be realized by a network
with one hidden layer

(given enough hidden
neurons)

Why “Deep” neural network not “Fat” neural network?

Fat + Short v.s. Thin + Tall

1x 2x ……
Nx

Deep

1x 2x ……
Nx

……

Shallow

Which one is better?

The same number
of parameters

Both shallow (a) and deep (b) networks are universal, that is they can approximate
arbitrarily well any continuous function of d variables on a compact domain.

We show that the approximation of functions with a compositional structure – such as
f(x1, · · · , xd) = h1(h2 · · ·(hj (hi1(x1, x2), hi2(x3, x4)), · · ·)) – can be achieved with the same
degree of accuracy by deep and shallow networks but that the number of parameters, the
VC-dimension and the fat-shattering dimension are much smaller for the deep networks
than for the shallow network with equivalent approximation accuracy.

It is intuitive that a hierarchical network matching the structure of a compositional
function should be “better” at approximating it than a generic shallow network but
universality of shallow networks makes the statement less than obvious. Our result makes
clear that the intuition is indeed correct and provides quantitative bounds.

Why are compositional functions important? We argue that the basic properties of
scalability and shift invariance in many natural signals such as images and text require
compositional algorithms that can be well approximated by Deep Convolutional Networks.
Of course, there are many situations that do not require shift invariant, scalable
algorithms. For the many functions that are not compositional we do not expect any
advantage of deep convolutional networks.

Learning Functions: When Is Deep Better Than Shallow by Hrushikesh Mhaskar Department of Mathematics, California Institute of
Technology, Pasadena, CA 91125; Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, Qianli
Liao and Tomaso Poggio Center for Brains, Minds, and Machines, McGovern Institute for Brain Research Massachusetts Institute of
Technology, Cambridge, MA, 02139

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingDon’t forget!

Preventing
Overfitting

Modify the Network
Better optimization

Strategy

Neural networks re-visited

Neural networks: without the brain stuff

(Before) Linear score function:

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: without the brain stuff

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

8

5

A

p

r

i

l

1

2

,

2

0

1

8
3072 100 10

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

8

6

A

p

r

i

l

1

2

,

2

0

1

8

Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

8

7

A

p

r

i

l

1

2

,

2

0

1

8

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

L

e

c

t

u

r

e

4

-

1

8

9

A

p

r

i

l

1

2

,

2

0

1

8

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Neural networks: Architectures

Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Lecture 5 - April 17, 201841
9
0

A bit of history:

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Lecture 5 -

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

1144

A bit of history:
ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

Lecture 5 -

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

1155

Fast-forward to today: ConvNets are
everywhere

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.self-driving cars

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
9
3

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

Convolutional Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

L
e
c
t
u
r
e
5
-
1
9
4

A

p

r

i

l

1

7

,

2

0

1

8

F

e

i

-

F

e

i

L

i

&

J

u

s

t

i

n

J

o

h

n

s

o

n

(First without the brain stuff)

EECS 498-007 Lecture 2 - 195

Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W) = Wx

Problem: So far our
classifiers don’t
respect the spatial
structure of images!

EECS 498-007 Lecture 2 - 196

Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W) = Wx

Problem: So far our
classifiers don’t
respect the spatial
structure of images!

Solution: Define new
computational nodes
that operate on
images!

Components of a Fully-
Connected Network

EECS 498-007 Lecture 2 - 197

x h s

Fully-Connected Layers Activation Function

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 198

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 199

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

Fully-Connected Layer

EECS 498-007 Lecture 2 - 200

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1
10

Fully-Connected Layer

EECS 498-007 Lecture 2 - 201

3072
1

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

OutputInput

1 number:
the result of taking a dot
product between a row of W
and the input (a 3072-
dimensional dot product)

1
10

Convolution Layer

EECS 498-007 Lecture 2 - 202

32

3

3x32x32 image: preserve spatial structure

width
depth /
channels

height32

Convolution Layer

EECS 498-007 Lecture 2 - 203

32

3

3x32x32 image

width
depth /
channels

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

height32

Convolution Layer

EECS 498-007 Lecture 2 - 204

32

3

3x32x32 image

width

height

depth /
channels

3x5x5 filter

Filters (almost) always extend
the full depth of the input
volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Convolution Layer

EECS 498-007 Lecture 2 - 205

32

3

3x32x32 image

3x5x5 filter

32
1 number:
the result of taking a dot product between the filter
and a small 3x5x5 chunk of the image
(i.e. 3*5*5 = 75-dimensional dot product + bias)

Convolution Layer

EECS 498-007 Lecture 2 - 206

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

1x28x28
activation map

1

28

28

Convolution Layer

EECS 498-007 Lecture 2 - 207

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1

28

1

28

28

Consider repeating
with a second (green)
filter:

Convolution
Layer

EECS 498-007 Lecture 2 - 208

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6
filters, each
3x5x5

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

Convolution
Layer

EECS 498-007 Lecture 2 - 209

32

3

3x32x32 image

32

6 activation maps,
each 1x28x28Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

Convolution
Layer

EECS 498-007 Lecture 2 - 210

32

3

3x32x32 image

32

28x28 grid, at each
point a 6-dim vector

Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters Stack activations to get a

6x28x28 output image!

Convolution
Layer

EECS 498-007 Lecture 2 - 211

32

3

2x3x32x32
Batch of images

32

2x6x28x28
Batch of outputs

Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters

Convolution
Layer

EECS 498-007 Lecture 2 - 212

W

Cin

N x Cin x H x W
Batch of images

H

N x Cout x H’ x W’
Batch of outputs

Also Cout-dim bias vector:

Convolution
Layer

Cout x Cinx Kw x
Kh filters

Cout

EECS 498-007 Lecture 2 - 213

32

32

3

W1: 6x3x5x5
b1: 5 28

28

6 10

26

26

….

Stacking
Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

EECS 498-007 Lecture 2 - 214

32

32

3

W1: 6x3x5x5
b1: 5 28

28

6 10

26

26

….

Stacking
Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv Conv Conv

W3: 12x10x3x3
b3: 12

Q: What happens if we stack
two convolution layers?
A: We get another convolution!
Q: How to fix this?

(Recall y=W2W1x
is a linear
classifier)

EECS 498-007 Lecture 2 - 215

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

Stacking
Convolutions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv

W3: 12x10x3x3
b3: 12

(Recall y=W2W1x
is a linear
classifier)

ReLU Conv ReLU Conv ReLU

Q: What happens if we stack
two convolution layers?
A: We get another convolution!
Q: How to fix this?
A: Non-linearity

EECS 498-007 Lecture 2 - 216

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6 10

26

26

….

What do convolutional
filters learn?

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

W2: 10x6x3x3
b2: 10

Second hidden layer:
N x 10 x 26 x 26

Conv

W3: 12x10x3x3
b3: 12

ReLU Conv ReLU Conv ReLU

Preview [Zeiler and Fergus 2013]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

Preview

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

preview:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 2018

EECS 498-007 Lecture 2 - 221

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6

What do convolutional
filters learn?

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

Conv ReLU

Linear classifier: One template per class

EECS 498-007 Lecture 2 - 222

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6

What do convolutional
filters learn?

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

Conv ReLU

MLP: Bank of whole-image templates

EECS 498-007 Lecture 2 - 223

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6

What do convolutional
filters learn?

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

Conv ReLU

First-layer conv filters: local image templates
(Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

EECS 498-007 Lecture 2 - 224

32

32

3

W1: 6x3x5x5
b1: 6 28

28

6

A closer look at spatial
dimensions

Input:
N x 3 x 32 x 32

First hidden layer:
N x 6 x 28 x 28

Conv ReLU

EECS 498-007 Lecture 2 - 225

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3

EECS 498-007 Lecture 2 - 226

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3

EECS 498-007 Lecture 2 - 227

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3

EECS 498-007 Lecture 2 - 228

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3

EECS 498-007 Lecture 2 - 229

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

EECS 498-007 Lecture 2 - 230

A closer look at spatial
dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Output: W – K + 1

Problem:
Feature maps
“shrink” with
each layer!

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

EECS 498-007 Lecture 2 - 231

A closer look at spatial
dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Output: W – K + 1

Problem:
Feature maps
“shrink” with
each layer!

Solution: padding
Add zeros around the input

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

EECS 498-007 Lecture 2 - 232

A closer look at spatial
dimensions

Input: 7x7
Filter: 3x3
Output: 5x5

In general:
Input: W
Filter: K
Padding: P
Output: W – K + 1 + 2P

Very common:
Set P = (K – 1) / 2 to
make output have
same size as input!

EECS 498-007 Lecture 2 - 233

Receptive Fields

Input Output

For convolution with kernel size K, each element in
the output depends on a K x K receptive field in the
input

EECS 498-007 Lecture 2 - 234

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Be careful – ”receptive field in the input” vs “receptive field in the previous layer”
Hopefully clear from context!

EECS 498-007 Lecture 2 - 235

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers
for each output to “see” the whole image image

EECS 498-007 Lecture 2 - 236

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers
for each output to “see” the whole image image

Solution: Downsample inside the network

EECS 498-007 Lecture 2 - 237

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

EECS 498-007 Lecture 2 - 238

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

EECS 498-007 Lecture 2 - 239

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

Output: 3x3

EECS 498-007 Lecture 2 - 240

Strided Convolution
Input: 7x7
Filter: 3x3
Stride: 2

Output: 3x3

In general:
Input: W
Filter: K
Padding: P
Stride: S
Output: (W – K + 2P) / S + 1

Convolution
Example

EECS 498-007 Lecture 2 - 241

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Convolution
Example

EECS 498-007 Lecture 2 - 242

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
10 x 32 x 32

Convolution
Example

EECS 498-007 Lecture 2 - 243

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: ?

Convolution
Example

EECS 498-007 Lecture 2 - 244

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Parameters per filter: 3*5*5 + 1 (for bias) = 76
10 filters, so total is 10 * 76 = 760

Convolution
Example

EECS 498-007 Lecture 2 - 245

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Number of multiply-add operations: ?

Convolution
Example

EECS 498-007 Lecture 2 - 246

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Number of multiply-add operations: 768,000
10*32*32 = 10,240 outputs; each output is the inner product
of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

EECS 498-007 Lecture 2 - 247

64

56

56
1x1 CONV
with 32 filters

32
56

56

(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

Example: 1x1 Convolution

EECS 498-007 Lecture 2 - 248

64

56

56
1x1 CONV
with 32 filters

32
56

56

(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

Lin et al, “Network in Network”, ICLR 2014

Stacking 1x1 conv layers
gives MLP operating on
each input position

Convolution
Summary

EECS 498-007 Lecture 2 - 249

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW
- Number filters: Cout
- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW
giving Cout filters of size Cin x KH x KW
Bias vector: Cout
Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

Convolution
Summary

EECS 498-007 Lecture 2 - 250

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW
- Number filters: Cout
- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW
giving Cout filters of size Cin x KH x KW
Bias vector: Cout
Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

Common settings:
KH = KW (Small square filters)
P = (K – 1) / 2 (”Same” padding)
Cin, Cout = 32, 64, 128, 256 (powers of 2)
K = 3, P = 1, S = 1 (3x3 conv)
K = 5, P = 2, S = 1 (5x5 conv)
K = 1, P = 0, S = 1 (1x1 conv)
K = 3, P = 1, S = 2 (Downsample by 2)

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 256

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

Pooling Layers: Another
way to downsample

EECS 498-007 Lecture 2 - 257

Hyperparameters:
Kernel Size
Stride
Pooling function

Max Pooling

EECS 498-007 Lecture 2 - 258

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2
kernel size and stride 2 6 8

3 4

Introduces invariance to
small spatial shifts
No learnable parameters!

Pooling Summary

EECS 498-007 Lecture 2 - 259

Input: C x H x W
Hyperparameters:
- Kernel size: K
- Stride: S
- Pooling function (max,

avg)
Output: C x H’ x W’ where
- H’ = (H – K) / S + 1
- W’ = (W – K) / S + 1
Learnable parameters: None!

Common settings:
max, K = 2, S = 2
max, K = 3, S = 2 (AlexNet)

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 261

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

Convolutional Networks

EECS 498-007 Lecture 2 - 262

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Example: LeNet-5

EECS 498-007 Lecture 2 - 263

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Example: LeNet-5*

EECS 498-007 Lecture 2 - 264

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20*,K=5,P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU** 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* Original paper: Cout = 6
** Original paper: sigmoid

Example: LeNet-5

EECS 498-007 Lecture 2 - 265

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2)* 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* 2x2 strided convolution

Example: LeNet-5

EECS 498-007 Lecture 2 - 266

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50*,K=5,P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU** 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* Original paper: Cout = 16, grouped
convolutions
** Original paper: sigmoid

Example: LeNet-5

EECS 498-007 Lecture 2 - 267

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2)* 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* 2x2 strided convolution

Example: LeNet-5

EECS 498-007 Lecture 2 - 268

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Example: LeNet-5

EECS 498-007 Lecture 2 - 269

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU* 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* Original paper has different 1x1 convolutions,
sigmoid non-linearities

Example: LeNet-5*

EECS 498-007 Lecture 2 - 270

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10)* 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

* Original paper uses RBF (radial basis function)
kernels instead of a softmax

Example: LeNet-5

EECS 498-007 Lecture 2 - 271

Layer Output Size Weight Size
Input 1 x 28 x 28

Conv (Cout=20, K=5, P=2, S=1) 20 x 28 x 28 20 x 1 x 5 x 5

ReLU 20 x 28 x 28
MaxPool(K=2, S=2) 20 x 14 x 14

Conv (Cout=50, K=5, P=2, S=1) 50 x 14 x 14 50 x 20 x 5 x 5

ReLU 50 x 14 x 14

MaxPool(K=2, S=2) 50 x 7 x 7
Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

ReLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

As we go through the network:

Spatial size decreases
(using pooling or strided conv)

Number of channels increases
(total “volume” is preserved!)

Problem: Deep Networks very
hard to train!

EECS 498-007 Lecture 2 - 272

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 273

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers Activation Function

Normalization

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 274

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation Function Normalization

Components of a
Convolutional Network

EECS 498-007 Lecture 2 - 275

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation Function Normalization

Most
computationally

expensive!

EECS 498-007 Lecture 2 - 276

Summary: Components of a
Convolutional Network

Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation Function Normalization

EECS 498-007 Lecture 2 - 277

Summary: Components of a
Convolutional Network

Problem: What is the right way to combine all these components?

Convolutional neural networks++

• Training and optimization
• More regularization (dropout, …)
• Convolutional neural networks
• Pooling
• Batch normalization
• CNN architectures

UW CSE 576 - Convolutional Neural Networks 278Richard Szeliski

