Filtering in the Frequency Domain

Outline

- Fourier Transform
- Filtering in Fourier Transform Domain

Fourier Series and Fourier Transform: History

- Jean Baptiste Joseph Fourier, French mathematician and physicist (03/21/1768-05/16/1830) http://en.wikipedia.org/wiki/Joseph Fourier

Orphaned: at nine

Egyptian expedition with Napoleon I:
1798
Governor of Lower Egypt

Permanent
Secretary of the French Academy of Sciences: 1822

Théorie analytique de la chaleur: 1822
(The Analytic Theory of Heat)

Fourier Series and Fourier Transform: History

- Fourier Series

Any periodic function can be expressed as the sum of sines and /or cosines of different frequencies, each multiplied by a different coefficients

- Fourier Transform

Any function that is not periodic can be expressed as the integral of sines and /or cosines multiplied by a weighing function

Fourier Series: Example

Fourier Transform

Fourier transform

- Decomposes any signal or image into weighted sum of sines and cosines

Fourier Series

We want to get this function

Following slides from Alyosha Efros

Fourier Series

We want to get this function

Following slides from Alyosha Efros

Fourier Series

We want to get this function

Fourier Series

We want to get this function

Fourier Series

We want to get this function

Fourier Series

We want to get this function

Fourier Series

We want to get this function
$=\quad A \sum_{k=1}^{\infty} \frac{1}{k} \sin (2 \pi k t)$
We'll get there in the limit

Fourier transform

Preliminary Concepts

$$
\begin{gathered}
j=\sqrt{-1}, \text { a complex number } \\
C=R+j I
\end{gathered}
$$

the conjugate

$$
C^{*}=R-j I
$$

$$
\begin{gathered}
|C|=\sqrt{R^{2}+I^{2}} \text { and } \theta=\arctan (I / R) \\
C=|C|(\cos \theta+j \sin \theta)
\end{gathered}
$$

Using Euler's formula,

$$
C=|C| e^{j \theta}
$$

Fourier Series

A function $f(t)$ of a continuous variable t that is periodic with period, T, can be expressed as the sum of sines and cosines multiplied by appropriate coefficients

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j \frac{2 \pi n}{T} t}
$$

where

$$
c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j \frac{2 \pi n}{T} t} d t \quad \text { for } n=0, \pm 1, \pm 2, \ldots
$$

Impulses and the Sifting Property (1)

A unit impulse of a continuous variable t located at $t=0$, denoted $\delta(t)$, defined as

$$
\delta(t)= \begin{cases}\infty & \text { if } t=0 \\ 0 & \text { if } t \neq 0\end{cases}
$$

and is constrained also to satisfy the identity

$$
\int_{-\infty}^{\infty} \delta(t) d t=1
$$

The sifting property

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)
$$

$$
\int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0)
$$

Impulses and the Sifting Property (2)

A unit impulse of a discrete variable x located at $x=0$, denoted $\delta(x)$, defined as

$$
\delta(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}
$$

and is constrained also to satisfy the identity

$$
\sum_{x=-\infty}^{\infty} \delta(x)=1
$$

The sifting property

$$
\sum_{x=-\infty}^{\infty} f(x) \delta\left(x-x_{0}\right)=f\left(x_{0}\right)
$$

$$
\sum_{x=-\infty}^{\infty} f(x) \delta(x)=f(0)
$$

Impulses and the Sifting Property (3)

impulse train $s_{\Delta T}(t)$,

$$
s_{\Delta T}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n \Delta T)
$$

Fourier Transform: One Continuous Variable

The Fourier Transform of a continous function $f(t)$

$$
F(\mu)=\mathfrak{I}\{f(t)\}=\int_{-\infty}^{\infty} f(t) e^{-j 2 \pi \mu t} d t
$$

The Inverse Fourier Transform of $F(\mu)$

$$
f(t)=\mathfrak{J}^{-1}\{F(\mu)\}=\int_{-\infty}^{\infty} F(\mu) e^{j 2 \pi \mu t} d \mu
$$

Fourier Transform: One Continuous Variable

a b c
FIGURE 4.4 (a) A simple func infinity in both directions.

Fourier Transform: Impulses

The Fourier transform of a unit impulse located at the origin:

$$
F(\mu)=\int_{-\infty}^{\infty} \delta(t) e^{-j 2 \pi \mu t} d t
$$

The Fourier transform of a unit impulse located at $t=t_{0}$:

$$
F(\mu)=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j 2 \pi \mu t} d t
$$

Fourier Transform: Impulse Trains

Impulse train $s_{\Delta T}(t), \quad s_{\Delta T}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n \Delta T)$
The Fourier series $s_{\Delta T}(t)$

$s_{\Delta T}(t)$

Fourier Transform: Impulse Trains

$$
\begin{aligned}
& =e^{j \overline{\Delta T}}
\end{aligned}
$$

Fourier Transform: Impulse Trains

Let $S(\mu)$ denote the Fourier transform of the periodic impulse train $S_{\Delta T}(t)$

Fourier Transform and Convolution

The convolution of two functions is denoted by the operator \star

$$
f(t) \star h(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) d \tau
$$

Fourier Transform and Convolution

Fourier Transform Pairs

$$
\begin{aligned}
& f(t) \star h(t) \Leftrightarrow H(\mu) F(\mu) \\
& f(t) h(t) \Leftrightarrow H(\mu) \star F(\mu)
\end{aligned}
$$

Fourier Transform of Sampled Functions

- A bandlimited signal is a signal whose Fourier transform is zero above a certain finite frequency. In other words, if the Fourier transform has finite support then the signal is said to be bandlimited.

An example of a simple bandlimited signal is a sinusoid of the form,

$$
x(t)=\sin (2 \pi f t+\theta)
$$

Fourier Transform of Sampled Functions

$$
\begin{aligned}
& F(\mu)= \\
& \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(\mu-\frac{n}{\Delta T}\right)
\end{aligned}
$$

Over-sampling
$\frac{1}{\Delta T}>2 \mu_{\max }$

Critically-sampling

$$
\frac{1}{\Delta T}=2 \mu_{\max }
$$

under-sampling
$\frac{1}{\Delta T}<2 \mu_{\max }{ }_{32}$

Nyquist-Shannon sampling theorem

- We can recover $f(t)$ from its sampled version if we can isolate a copy of $F(\mu)$ from the periodic sequence of copies of this function contained in $F(\mu)$, the transform of the sampled function $f(t)$
- Sufficient separation is guaranteed if $\frac{1}{\Delta T}>2 \mu_{\max }$

Sampling theorem: A continuous, band-limited function can be recovered completely from a set of its samples if the samples are acquired at a rate exceeding twice the highest frequency content of the function

Nyquist-Shannon sampling theorem

Aliasing

If a band-limited function is sampled at a rate that is less than twice its highest frequency?

The inverse transform will yield a corrupted function. This effect is known as frequency aliasing or simply as aliasing.

Aliasing

a
b
c
FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function. (Interference from adjacent periods is shown dashed in this figure). (b) The same ideal

Aliasing

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks like a sine wave having a frequency much lower than the frequency of the continuous signal. The period of the sine wave is 2 s , so the zero crossings of the horizontal axis occur every second. ΔT is the separation between samples.

The Discrete Fourier Transform (DFT) of One Variable

$$
\begin{aligned}
& F(\mu)=\sum_{x=0}^{M-1} f(x) e^{-j 2 \pi \mu x / M}, \quad \mu=0,1, \ldots, M-1 \\
& f(x)=\frac{1}{M} \sum_{\mu=0}^{M-1} F(\mu) e^{j 2 \pi \mu x / M}, \quad x=0,1,2, \ldots, M-1
\end{aligned}
$$

2-D Impulse and Sifting Property: Continuous

The impulse $\delta(t, z), \quad \delta(t, z)= \begin{cases}\infty & \text { if } t=z=0 \\ 0 & \text { otherwise }\end{cases}$ and $\quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t, z) d t d z=1$

The sifting property

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) \delta(t, z) d t d z=
$$

2-D Impulse and Sifting Property: Discrete

The impulse $\delta(x, y), \quad \delta(x, y)=\left\{\begin{array}{lr}1 & \text { if } x=y=0 \\ 0 & \text { otherwise }\end{array}\right.$
The sifting property

$$
\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \delta(x, y)=f(0,0)
$$

and

$$
\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \delta\left(x-x_{0}, y-y_{0}\right)=f\left(x_{0}, y_{0}\right)
$$

2-D Fourier Transform: Continuous

$$
F(\mu, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+v z)} d t d z
$$

and

$$
f(t, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mu, v) e^{j 2 \pi(\mu t+v z)} d \mu d v
$$

2-D Fourier Transform: Continuous

a b
FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The block is longer along the t-axis, so the spectrum is more "contracted" along the μ-axis. Compare with Fig. 4.4.

2-D Sampling and 2-D Sampling Theorem

$2-D$ impulse train:

$$
s_{\Delta T \Delta Z}(t, z)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t-m \Delta T, z-n \Delta Z)
$$

FIGURE 4.14
Two-dimensional impulse train.

2-D Sampling and 2-D Sampling Theorem

Function $f(t, z)$ is said to be band-limited if its Fourier transform is 0 outside a rectangle established by the intervals $\left[-\mu_{\text {max }}, \mu_{\text {max }}\right]$ and $\left[-v_{\text {max }}, v_{\text {max }}\right]$, that is

$$
F(\mu, v)=0 \text { for }|\mu| \geq \mu_{\max } \text { and }|v| \geq v_{\max }
$$

Two-dimensional sampling theorem:
A continuous, band-limited function $f(t, z)$ can be recovered with no error from a set of its samples if the sampling intervals are

$$
\Delta \mathrm{T}<\frac{1}{2 \mu_{\max }} \text { and } \Delta \mathrm{Z}<\frac{1}{2 v_{\max }}
$$

2-D Sampling and 2-D Sampling Theorem

a b
FIGURE 4.15
Two-dimensional Fourier transforms of (a) an oversampled, and
(b) under-sampled band-limited function.

Aliasinq in Imaqes: Example

a b c

Re-sampling

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing. (b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible. (c) Result of blurring the image in (a) with a 3×3 averaging filter prior to resizing. The image is slightly more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal Compression Laboratory, University of California, Santa Barbara.)

Aliasing in Images: Example

a b c

Re-sampling

FIGURE 4.18 Illustration of jaggies. (a) A 1024×1024 digital image of a computer-generated scene with negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation. (c) Result of blurring the image in (a) with a 5×5 averaging filter prior to resizing it to 25% using bilinear interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

No prefiltering

Prefiltered sub-sampling

Gaussian 1/2

G 1/4

G 1/8

Moiré patterns

- Moiré patterns are often an undesired artifact of images produced by various digital imaging and computer graphics techniques
e. g., when scanning a halftone picture or ray tracing a checkered plane. This cause of moiré is a special case of aliasing, due to under-sampling a fine regular pattern
http://en.wikipedia.org/wiki/Moiré_pattern

A moiré pattern formed by incorrectly downsampling the former image

Moire Pattern

a b c
d e f
FIGURE 4.20
Examples of the moiré effect. These are ink drawings, not digitized patterns. Superimposing one pattern on the other is equivalent mathematically to multiplying the patterns.

FIGURE 4.21
A newspaper image of size 246×168 pixels sampled at 75 dpi showing a moiré pattern. The moiré pattern in this image is the interference pattern created between the $\pm 45^{\circ}$ orientation of the halftone dots and the north-south orientation of the sampling grid used to digitize the image.

FIGURE 4.22
A newspaper image and an enlargement showing how halftone dots are arranged to
render shades of gray.

2-D Discrete Fourier Transform and Its Inverse

DFT:
$F(\mu, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(\mu x / M+\nu y / N)}$
$\mu=0,1,2, \ldots, M-1 ; v=0,1,2, \ldots, N-1$;
$f(x, y)$ is a digital image of size $\mathrm{M} \times \mathrm{N}$.
IDFT:

$$
f(x, y)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} F(\mu, v) e^{j 2 \pi(\mu x / M+v y / N)}
$$

Properties of the 2-D DFT

 relationships between spatial and frequency intervalsLet ΔT and ΔZ denote the separations between samples, then the seperations between the corresponding discrete, frequency domain variables are given by

$$
\begin{aligned}
& \Delta \mu=\frac{1}{M \Delta T} \\
& \Delta v=\frac{1}{N \Delta Z}
\end{aligned}
$$

Properties of the 2-D DFT translation and rotation

$f(x, y) e^{j 2 \pi\left(\mu_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(\mu-\mu_{0}, v-v_{0}\right)$ and

$$
f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(\mu, v) e^{-j 2 \pi\left(\mu x_{0} / M+\nu y_{0} / N\right)}
$$

Using the polar coordinates
$x=r \cos \theta \quad \mathrm{y}=\mathrm{r} \sin \theta \quad \mu=\omega \cos \varphi \quad v=\omega \sin \varphi$ results in the following transform pair:

$$
f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right)
$$

Properties of the 2-D DFT periodicity

$2-D$ Fourier transform and its inverse are infinitely periodic

$$
\begin{aligned}
& F(\mu, v)=F\left(\mu+k_{1} M, v\right)=F\left(\mu, v+k_{2} N\right)=F\left(\mu+k_{1} M, v+k_{2} N\right) \\
& f(x, y)=f\left(x+k_{1} M, y\right)=f\left(x, y+k_{2} N\right)=f\left(x+k_{1} M, y+k_{2} N\right) \\
& f(x) e^{j 2 \pi\left(\mu_{0} x / M\right)} \Leftrightarrow F\left(\mu-\mu_{0}\right) \\
& \mu_{0}=M / 2, \quad f(x)(-1)^{x} \Leftrightarrow F(\mu-M / 2) \\
& f(x, y)(-1)^{x+y} \Leftrightarrow F(\mu-M / 2, v-N / 2)
\end{aligned}
$$

Properties of the 2-D DFT Symmetry

	Spatial Domain		Frequency Domain
1)	$f(x, y)$ real	\Leftrightarrow	$F^{*}(u, v)=F(-u,-v)$
2)	$f(x, y)$ imaginary	\Leftrightarrow	$F^{*}(-u,-v)=-F(u, v)$
3)	$f(x, y)$ real	\Leftrightarrow	$R(u, v)$ even; $I(u, v)$ odd
4)	$f(x, y)$ imaginary	\Leftrightarrow	$R(u, v)$ odd; $I(u, v)$ even
5)	$f(-x,-y)$ real	\Leftrightarrow	$F^{*}(u, v)$ complex
6)	$f(-x,-y)$ complex	\Leftrightarrow	$F(-u,-v)$ complex
7)	$f^{*}(x, y)$ complex	\Leftrightarrow	$F^{*}(-u-v)$ complex
8)	$f(x, y)$ real and even	\Leftrightarrow	$F(u, v)$ real and even
9)	$f(x, y)$ real and odd	\Leftrightarrow	$F(u, v)$ imaginary and odd
10)	$f(x, y)$ imaginary and even	\Leftrightarrow	$F(u, v)$ imaginary and even
11)	$f(x, y)$ imaginary and odd	\Leftrightarrow	$F(u, v)$ real and odd
12)	$f(x, y)$ complex and even	\Leftrightarrow	$F(u, v)$ complex and even
13)	$f(x, y)$ complex and odd	\Leftrightarrow	$F(u, v)$ complex and odd

TABLE 4.1 Some symmetry properties of the 2-D DFT and its inverse. $R(u, v)$ and $I(u, v)$ are the real and imaginary parts of $F(u, v)$, respectively. The term complex indicates that a function has nonzero real and imaginary parts.
${ }^{\dagger}$ Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range $[0, M-1]$, and y, and v in the range $[0, N-1]$. To say that a complex function is even means that its real and imaginary parts

Properties of the 2-D DFT Fourier Spectrum and Phase Angle

2-D DFT in polar form

$$
F(u, v)=|F(u, v)| e^{j \phi(u, v)}
$$

Fourier spectrum

$$
|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}
$$

Power spectrum

$$
P(u, v)=|F(u, v)|^{2}=R^{2}(u, v)+I^{2}(u, v)
$$

Phase angle

$$
\phi(\mathrm{u}, \mathrm{v})=\arctan \left[\frac{I(u, v)}{R(u, v)}\right]
$$

Nice tutorial on Fourier Series

$$
\begin{aligned}
& n=10 \quad n=50 \quad n=250 \\
& \text { a.k.a "everything is rotations" }
\end{aligned}
$$

Nice tutorial on Fourier transform

2D Fourier Transform What does a sine look like in 2D?

Intensity Image

Fourier Image

Fourier Transform of an image

$|f(\omega)|$

2D Fourier Transform

I

Low pass filtering in the Fourier domain

$\mathrm{h}(\boldsymbol{\omega})$

$|f(\omega)|$

Low pass filtering in the Fourier domain

This is a product of two functions, not a convolution

Low pass filtering in the Fourier domain

$|h(\boldsymbol{\omega}) f(\boldsymbol{\omega})|$

$\mathrm{FT}^{-1}[\mathrm{~h}(\boldsymbol{\omega}) \mathrm{f}(\boldsymbol{\omega})]$

The Convolution Theorem

Convolution in the spatial domain = multiplication in the Fourier domain

$$
\operatorname{FT}[h * f]=\operatorname{FT}[h] \operatorname{FT}[f]
$$

Works for inverse Fourier transforms too:

$$
\mathrm{FT}^{-1}[h f]=\mathrm{FT}^{1}[h] * \mathrm{FT}^{1}[f]
$$

Applying the convolution theorem

Spatial domain

Frequency domain

Applying the convolution theorem

Applying the convolution theorem
 FT^{-1}

The "ideal" low pass filter

Wait a minute, it still looks soiled!

Remember what happens when you filter an impulse

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$\mathrm{F}[\mathrm{x}, \mathrm{y}]$

$\mathrm{H}[\mathrm{u}, \mathrm{v}]$

$\mathrm{G}[\mathrm{x}, \mathrm{y}]$

This phenomenon with sinc known as "ringing"

Be careful what you wish for... The "ideal" low-pass filter is not that good

- produces ringing artifacts
- requires infinite size
- seldom what you want anyway

What went wrong?

- Our goal is to remove high frequencies
- Not to pass through all low frequencies untouched

Fade out the high frequencies

$|\mathrm{h}(\boldsymbol{\omega}) \mathrm{f}(\boldsymbol{\omega})|$

$\mathrm{FT}^{-1}[\mathrm{~h}(\boldsymbol{\omega}) \mathrm{f}(\boldsymbol{\omega})]$

Applying the convolution theorem

Gaussian(1/ $\boldsymbol{\sigma}$)

And that's why filtering with a Gaussian works...

Example: Phase Angles and The Reconstructed

$\begin{array}{lll}\text { a } & \text { b } \\ \text { d } & \text { e }\end{array}$
FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction using the phase angle corresponding to the woman and the spectrum corresponding to the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the spectrum of the woman.

2-D Convolution Theorem

1-D convolution

$$
f(x) \star h(x)=\sum_{m=0}^{M-1} f(m) h(x-m)
$$

2-D convolution

$$
\begin{gathered}
f(x, y) \star h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n) \\
x=0,1,2, \ldots, M-1 ; y=0,1,2, \ldots, N-1 . \\
f(x, y) \star h(x, y) \Leftrightarrow F(u, v) H(u, v) \\
f(x, y) h(x, y) \Leftrightarrow F(u, v) \star H(u, v)
\end{gathered}
$$

Zero Padding

- Consider two functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ composed of A and B samples, respectively
- Append zeros to both functions so that they have the same length, denoted by P , then wraparound is avoided by choosing

$$
P \geq A+B-1
$$

Zero Padding

- Let $f(x, y)$ and $h(x, y)$ be two image arrays of sizes $A \times B$ and $\mathrm{C} \times \mathrm{D}$ pixels, respectively. Wraparound error in their convolution can be avoided by padding these functions with zeros

$$
\begin{aligned}
& f_{p}(x, y)=\left\{\begin{array}{cc}
f(x, y) & 0 \leq x \leq A-1 \text { and } 0 \leq y \leq B-1 \\
0 & A \leq x \leq P \text { or } B \leq y \leq Q
\end{array}\right. \\
& h_{p}(x, y)=\left\{\begin{array}{cc}
h(x, y) & 0 \leq x \leq C-1 \text { and } 0 \leq y \leq D-1 \\
0 & C \leq x \leq P \text { or } D \leq y \leq Q
\end{array}\right.
\end{aligned}
$$

Here $P \geq A+C-1 ; Q \geq B+D-1$

Summary

Name

1) Discrete Fourier transform (DFT) of $f(x, y)$

$$
F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}
$$

2) Inverse discrete

Fourier transform
(IDFT) of $F(u, v)$
$f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}$
3) Polar representation
$F(u, v)=|F(u, v)| e^{j \phi(u, v)}$
4) Spectrum
5) Phase angle
$|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}$
$R=\operatorname{Real}(F) ; \quad I=\operatorname{Imag}(F)$
$\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]$
6) Power spectrum
$P(u, v)=|F(u, v)|^{2}$
7) Average value

Summary

Name Expression(s)
8) Periodicity (k_{1} and k_{2} are integers)
9) Convolution
10) Correlation
11) Separability
12) Obtaining the inverse Fourier transform using a forward transform algorithm.

$$
\begin{aligned}
F(u, v) & =F\left(u+k_{1} M, v\right)=F\left(u, v+k_{2} N\right) \\
& =F\left(u+k_{1} M, v+k_{2} N\right) \\
f(x, y) & =f\left(x+k_{1} M, y\right)=f\left(x, y+k_{2} N\right) \\
& =f\left(x+k_{1} M, y+k_{2} N\right) \\
f(x, y) & \star h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n) \\
f(x, y) & \text { ¿九 } h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x+m, y+n)
\end{aligned}
$$

The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.
$M N f^{*}(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}$
This equation indicates that inputting $F^{*}(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $M N f^{*}(x, y)$. Taking the complex conjugate and dividing by $M N$ gives the desired inverse. See Section 4.11.2.

Summary

Name	DFT Pairs
1) Symmetry properties	See Table 4.1
2) Linearity	$a f_{1}(x, y)+b f_{2}(x, y) \Leftrightarrow a F_{1}(u, v)+b F_{2}(u, v)$
3) Translation	$f(x, y) e^{j 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)$
(general)	$f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{0} / M+v y_{0} / N\right)}$
4) Translation	$f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2)$
to center of	
the frequency	$f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v}$
rectangle,	
(M/2,N/2)	
5) Rotation	$f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right)$
	$x=r \cos \theta \quad y=r \sin \theta \quad u=\omega \cos \varphi \quad v=\omega \sin \varphi$
6) Convolution	
theorem ${ }^{\dagger}$	$f(x, y) \star h(x, y) \Leftrightarrow F(u, v) H(u, v)$
	$f(x, y) h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$

Summary

${ }^{\dagger}$ Assumes that the functions have been extended by zero padding. Convolution and correlation are associative, commutative, and distributive.

The Basic Filtering in the Frequency Domain

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.)

The Basic Filtering in the Frequency Domain

- Modifying the Fourier transform of an image
- Computing the inverse transform to obtain the processed result

$$
\begin{aligned}
& g(x, y)=\mathfrak{J}^{-1}\{H(u, v) F(u, v)\} \\
& F(u, v) \text { is the DFT of the input image } \\
& H(u, v) \text { is a filter function. }
\end{aligned}
$$

The Basic Filtering in the Frequency Domain

- In a filter $\mathrm{H}(\mathrm{u}, \mathrm{v})$ that is 0 at the center of the transform and 1 elsewhere, what's the output image?

The Basic Filtering in the Frequency Domain

 Eq. (4.7-1). We used $a=0.85$ in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).

Zero-Phase-Shift Filters

$$
\begin{aligned}
& g(x, y)=\mathfrak{J}^{-1}\{H(u, v) F(u, v)\} \\
& F(u, v)=R(u, v)+j I(u, v) \\
& g(x, y)=\mathfrak{J}^{-1}[H(u, v) R(u, v)+j H(u, v) I(u, v)]
\end{aligned}
$$

Filters affect the real and imaginary parts equally, and thus no effect on the phase.

These filters are called zero-phase-shift filters

Examples: Nonzero-Phase-Shift Filters

a b

FIGURE 4.35

(a) Image resulting from multiplying by 0.5 the phase angle in Eq. (4.6-15) and then computing the IDFT. (b) The result of multiplying the phase by 0.25 . The spectrum was not changed in either of the two cases.

Correspondence Between Filtering in the Spatial and Frequency Domains (1)

Let $\mathrm{H}(\mathrm{u})$ denote the 1-D frequency domain Gaussian filter

$$
H(u)=A e^{-u^{2} / 2 \sigma^{2}}
$$

The corresponding filter in the spatial domain

$$
h(x)=\sqrt{2 \pi} \sigma A e^{-2 \pi^{2} \sigma^{2} x^{2}}
$$

1. Both components are Gaussian and real
2. The functions behave reciprocally

Correspondence Between Filtering in the Spatial and Frequency Domains (2)

Let $H(u)$ denote the difference of Gaussian filter

$$
\begin{aligned}
& H(u)=A e^{-u^{2} / 2 \sigma_{1}^{2}}-B e^{-u^{2} / 2 \sigma_{2}^{2}} \\
& \text { with } A \geq B \text { and } \sigma_{1} \geq \sigma_{2}
\end{aligned}
$$

The corresponding filter in the spatial domain

$$
h(x)=\sqrt{2 \pi} \sigma_{1} A e^{-2 \pi^{2} \sigma_{1}^{2} x^{2}}-\sqrt{2 \pi} \sigma_{2} A e^{-2 \pi^{2} \sigma_{2}^{2} x^{2}}
$$

High-pass filter or low-pass filter ?

Correspondence Between Filtering in the Spatial and Frequency Domains (3)

a	c
b	d

FIGURE 4.37
(a) A 1-D Gaussian lowpass filter in the frequency domain.
(b) Spatial
lowpass filter
corresponding to
(a). (c) Gaussian
highpass filter in the frequency domain. (d) Spatial highpass filter corresponding to (c). The small 2-D masks shown are spatial filters we used in Chapter 3.

Correspondence Between Filtering in the Spatial and Frequency Domains: Example

Correspondence Between Filtering in the Spatial and Frequency Domains: Example

-1	0	1
-2	0	2
-1	0	1

a b
c d
FIGURE 4.39
(a) A spatial mask and
perspective plot of its
corresponding frequency domain filter. (b) Filter shown as an image. (c) Result of filtering
Fig. 4.38(a) in the frequency domain with the filter in (b). (d) Result of filtering the same image with the spatial filter in
(a). The results
are identical.

Image Smoothing Using Filter Domain Filters: ILPF

a b c
FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image. (c) Filter radial cross section.

ILPF Filtering Example

a b
FIGURE 4.41 (a) Test pattern of size 688×688 pixels, and (b) its Fourier spectrum. The spectrum is double the image size due to padding but is shown in half size so that it fits in the page. The superimposed circles have radii equal to $10,30,60,160$, and 460 with respect to the full-size spectrum image. These radii enclose $87.0,93.1,95.7,97.8$, and 99.2% of the padded image power, respectively.

ILPF

Filtering Example

a b
c d

e f

The Spatial Representation of ILPF

Image Smoothing Using Filter Domain Filters: BLPF

Butterworth Lowpass Filters (BLPF) of order n and with cutoff frequency D_{0}

$$
H(u, v)=\frac{1}{1+\left[D(u, v) / D_{0}\right]^{2 n}}
$$

a b c
FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections of orders 1 through 4.

The Spatial Representation of BLPF

a b c d
FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1,2,5, and 20, and corresponding intensity profiles through the center of the filters (the size in all cases is 1000×1000 and the cutoff frequency is 5). Observe how ringing increases as a function of filter order.

Image Smoothing Using Filter Domain Filters: GLPF

Gaussian Lowpass Filters (GLPF) in two dimensions is given

$$
H(u, v)=e^{-D^{2}(u, v) / 2 \sigma^{2}}
$$

By letting $\sigma=D_{0}$

$$
H(u, v)=e^{-D^{2}(u, v) / 2 D_{0}^{2}}
$$

Image Smoothing Using Filter Domain Filters: GLPF

a b c
FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections for various values of D_{0}.

Examples of smoothing by GLPF (1)

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

a b

FIGURE 4.49
(a) Sample text of low resolution (note broken characters in magnified view). (b) Result of filtering with a GLPF (broken character segments were joined).

Examples of smoothing by GLPF (2)

a b c
FIGURE 4.50 (a) Original image (784×732 pixels). (b) Result of filtering using a GLPF with $D_{0}=100$. (c) Result of filtering using a GLPF with $D_{0}=80$. Note the reduction in fine skin lines in the magnified sections in (b) and (c).

Examples of smoothing by GLPF (3)

a b c
FIGURE 4.51 (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with $D_{0}=50$. (c) Result of using a GLPF with $D_{0}=20$. (Original image courtesy of NOAA.)

Image Sharpening Using Frequency Domain

 FiltersA highpass filter is obtained from a given lowpass filter using

$$
H_{H P}(u, v)=1-H_{L P}(u, v)
$$

A 2-D ideal highpass filter (IHPL) is defined as

$$
H(u, v)= \begin{cases}0 & \text { if } D(u, v) \leq D_{0} \\ 1 & \text { if } D(u, v)>D_{0}\end{cases}
$$

Image Sharpening Using Frequency Domain

 FiltersA 2-D Butterworth highpass filter (BHPL) is defined as

$$
H(u, v)=\frac{1}{1+\left[D_{0} / D(u, v)\right]^{2 n}}
$$

A 2-D Gaussian highpass filter (GHPL) is defined as

$$
H(u, v)=1-e^{-D^{2}(u, v) / 2 D_{0}^{2}}
$$

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

The Spatial Representation of Highpass

 Filters

a b c
FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

Filtering Results by IHPF

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with $D_{0}=30,60$, and 160.

Filtering Results by BHPF

a b c
FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with $D_{0}=30,60$, and 160 , corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained with an IHPF.

Filtering Results by GHPF

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_{0}=30,60$, and 160, corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

Using Highpass Filtering and Threshold for Image Enhancement

a b c
FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c) Result of thresholding (b). (Original image courtesy of the U.S. National Institute of Standards and Technology.)

The Laplacian in the Frequency Domain

$$
\begin{aligned}
H(u, v) & =-4 \pi^{2}\left(u^{2}+v^{2}\right) \\
H(u, v) & \left.=-4 \pi^{2}\left[(u-P / 2)^{2}+(v-Q / 2)^{2}\right)\right] \\
& =-4 \pi^{2} D^{2}(u, v)
\end{aligned}
$$

The Laplacian image

$$
\nabla^{2} f(x, y)=\mathfrak{J}^{-1}\{H(u, v) F(u, v)\}
$$

Enhancement is obtained

$$
g(x, y)=f(x, y)+c \nabla^{2} f(x, y) \quad c=-1
$$

The Laplacian in the Frequency Domain

The enhanced image

$$
\begin{aligned}
g(x, y) & =\mathfrak{J}^{-1}\{F(u, v)-H(u, v) F(u, v)\} \\
& =\mathfrak{J}^{-1}\{[1-H(u, v)] F(u, v)\} \\
& =\mathfrak{J}^{-1}\left\{\left[1+4 \pi^{2} D^{2}(u, v)\right] F(u, v)\right\}
\end{aligned}
$$

The Laplacian in the Frequency Domain

a b
FIGURE 4.58
(a) Original,
blurry image.
(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).

Unsharp Masking, Highboost Filtering and High-Frequency-Emphasis Fitering

$$
\begin{aligned}
& g_{\text {mask }}(x, y)=f(x, y)-f_{L P}(x, y) \\
& f_{L P}(x, y)=\mathfrak{J}^{-1}\left[H_{L P}(u, v) F(u, v)\right]
\end{aligned}
$$

Unsharp masking and highboost filtering

$$
g(x, y)=f(x, y)+k^{*} g_{\text {mask }}(x, y)
$$

$$
\begin{aligned}
g(x, y) & =\mathfrak{J}^{-1}\left\{\left[1+k^{*}\left[1-H_{L P}(u, v)\right]\right] F(u, v)\right\} \\
& =\mathfrak{J}^{-1}\left\{\left[1+k^{*} H_{H P}(u, v)\right] F(u, v)\right\}
\end{aligned}
$$

Unsharp Masking, Highboost Filtering and High-Frequency-Emphasis Fitering

$g(x, y)=\mathfrak{J}^{-1}\left\{\left[k_{1}+k_{2} * H_{H P}(u, v)\right] F(u, v)\right\}$
$k_{1} \geq 0$ and $k_{2} \geq 0$

Gaussian Filter
 $$
D_{0}=40
$$

High-Frequency-Emphasis Filtering Gaussian Filter $\mathrm{K} 1=0.5, \mathrm{k} 2=0.75$

a	b
c	d

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian filter. (c) Result of high-frequency-emphasis filtering using the same filter. (d) Result of performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical School.)

Homomorphic Filtering

$$
\begin{aligned}
& f(x, y)=i(x, y) r(x, y) \\
& \mathfrak{J}[f(x, y)]=\mathfrak{J}[i(x, y)] \Im[r(x, y)] ? \\
& z(x, y)=\ln f(x, y)=\ln i(x, y)+\ln r(x, y) \\
& \Im\{z(x, y)\}=\mathfrak{J}\{\ln f(x, y)\}=\Im\{\ln i(x, y)\}+\Im\{\ln r(x, y)\} \\
& Z(u, v)=F_{i}(u, v)+F_{r}(u, v)
\end{aligned}
$$

Homomorphic Filtering

$$
\begin{aligned}
S(u, v) & =H(u, v) Z(u, v) \\
& =H(u, v) F_{i}(u, v)+H(u, v) F_{r}(u, v) \\
s(x, y) & =\mathfrak{J}^{-1}\{S(u, v)\} \\
& =\mathfrak{J}^{-1}\left\{H(u, v) F_{i}(u, v)+H(u, v) F_{r}(u, v)\right\} \\
& =\mathfrak{J}^{-1}\left\{H(u, v) F_{i}(u, v)\right\}+\mathfrak{J}^{-1}\left\{H(u, v) F_{r}(u, v)\right\} \\
& =i^{\prime}(x, y)+r^{\prime}(x, y) \\
g(x, y) & =e^{s(x, y)}=e^{i^{\prime}(x, y)} e^{r^{\prime}(x, y)}=i_{0}(x, y) r_{0}(x, y)
\end{aligned}
$$

Homomorphic Filtering

The illumination component of an image generally is characterized by slow spatial variations, while the reflectance component tends to vary abruptly

These characteristics lead to associating the low frequencies of the Fourier transform of the logarithm of an image with illumination the high frequencies with reflectance.

Homomorphic Filtering

$$
H(u, v)=\left(\gamma_{H}-\gamma_{L}\right)\left[1-e^{-c\left[D^{2}(u, v) / D_{0}^{2}\right]}\right]+\gamma_{L}
$$

FIGURE 4.61
Radial cross
section of a
circularly
symmetric
homomorphic filter function.
The vertical axis is at the center of the frequency rectangle and $D(u, v)$ is the distance from the center.

$$
\begin{aligned}
& \gamma_{L}=0.25 \\
& \gamma_{H}=2 \\
& c=1 \\
& D_{0}=80
\end{aligned}
$$

E 4.62
ll body PET
b) Image ced using
morphic
1g. (Original courtesy of ichael
;ey, CTI
;ystems.)

Homomorphic Filtering

a b

FIGURE

(a) Original
image. (b) Image processed by homomorphic filtering (note details inside
shelter).
(Stockham.)

Selective Filtering

Non-Selective Filters:

operate over the entire frequency rectangle

Selective Filters

operate over some part, not entire frequency rectangle - bandreject or bandpass: process specific bands

- notch filters: process small regions of the frequency rectangle

Selective Filtering: Bandreject and Bandpass Filters

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance $D(u, v)$ from the center of the filter, D_{0} is the cutoff frequency, and n is the order of the Butterworth filter. We show D instead of $D(u, v)$ to simplify the notation in the table.
$\left.\begin{array}{|c}\hline \text { Ideal } \\ \hline H(u, v)=\left\{\begin{array}{ll}0 & \text { if } D_{0}-\frac{W}{2} \leq D \leq D_{0}+\frac{W}{2} \\ 1 & \text { otherwise }\end{array} \quad H(u, v)=\frac{1}{1+\left[\frac{D W}{D^{2}-D_{0}^{2}}\right]^{2 n}}\right.\end{array} \quad H(u, v)=1-e^{-\left[\frac{D^{2}-D_{0}^{2}}{D W}\right]^{2}}\right]$ Gaussian

$$
H_{B P}(u, v)=1-H_{B R}(u, v)
$$

Selective Filtering: Bandreject and Bandpass Filters

Selective Filtering: Notch Filters

Zero-phase-shift filters must be symmetric about the origin. A notch with center at $\left(u_{0}, v_{0}\right)$ must have a corresponding notch at location $\left(-\mathrm{u}_{0},-\mathrm{v}_{0}\right)$.

Notch reject filters are constructed as products of highpass filters whose centers have been translated to the centers of the notches.

$$
H_{N R}(u, v)=\prod_{k=1}^{Q} H_{k}(u, v) H_{-k}(u, v)
$$

where $H_{k}(u, v)$ and $H_{-k}(u, v)$ are highpass filters whose centers are at $\left(u_{k}, v_{k}\right)$ and $\left(-u_{k},-v_{k}\right)$, respectively.

Selective Filtering: Notch Filters

$$
H_{N R}(u, v)=\prod_{k=1}^{Q} H_{k}(u, v) H_{-k}(u, v)
$$

where $H_{k}(u, v)$ and $H_{-k}(u, v)$ are highpass filters whose centers are at $\left(u_{k}, v_{k}\right)$ and $\left(-u_{k},-v_{k}\right)$, respectively.

A Butterworth notch reject filter of order n

$$
\begin{aligned}
& H_{N R}(u, v)=\prod_{k=1}^{3}\left[\frac{1}{1+\left[D_{0 k} / D_{k}(u, v)\right]^{2 n}}\right]\left[\frac{1}{1+\left[D_{0 k} / D_{-k}(u, v)\right]^{2 n}}\right] \\
& D_{k}(u, v)=\left[\left(u-M / 2-u_{k}\right)^{2}+\left(v-N / 2-v_{k}\right)^{2}\right]^{1 / 2} \\
& D_{-k}(u, v)=\left[\left(u-M / 2+u_{k}\right)^{2}+\left(v-N / 2+v_{k}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Examples: Notch Filters (1)

$\begin{array}{ll}a & b \\ c & d\end{array}$
FIGURE 4.64
(a) Sampled
newspaper image
showing a moiré pattern.
(b) Spectrum.
(c) Butterworth notch reject filter multiplied by the Fourier transform.
(d) Filtered image.

A Butterworth notch reject filter $D_{0}=3$ and $n=4$ for all notch pairs

Examples:

 Notch Filters (2)a b
c d
FIGURE 4.65
(a) 674×674 image of the Saturn rings showing nearly periodic interference.
(b) Spectrum: The bursts of energy in the vertical axis
 near the origin correspond to the interference pattern. (c) A vertical notch reject filter. (d) Result of filtering. The thin black border in (c) was added for clarity; it is not part of the data. (Original image courtesy of Dr. Robert
A. West, NASA/JPL.)

FIGURE 4.66
(a) Result
(spectrum) of applying a notch pass filter to the DFT of Fig. 4.65(a). (b) Spatial pattern obtained by computing the IDFT of (a).

