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Fourier Series and Fourier Transform: History

» Jean Baptiste Joseph Fourier, French mathematician and physicist

(03/21/1768-05/16/1830) http://en.wikipedia.org/wiki/Joseph_Fourier

Orphaned: at nine

Egyptian expedition
with Napoleon I:
1798

Governor of Lower

Egypt

10/15/22

Permanent
Secretary of the
French Academy of
Sciences: 1822

Théorie analytique
de la chaleur :
1822

(The Analytic
Theory of Heat)


http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit

Fourier Series and Fourier Transform: History

Fourier Series

Any periodic function can be expressed as the sum of sines
and /or cosines of different frequencies, each multiplied by
a different coefficients

Fourier Transform

Any function that is not periodic can be expressed as the
integral of sines and /or cosines multiplied by a weighing
function
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Fourier Series: Example
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10/15/22 FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



Fourier Transform

Fourier transform

Decomposes any signal or image into weighted sum of sines and cosines



Fourier Series
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Fourier Series
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Fourier Series

AZ —sin(2m kt)

We want to get this We'll get there in the
function limit



Fourier transform

f(x) |F(w)

signal Fourier transform of
signal



Preliminary Concepts

Jj =+/—1, a complex number
C=R+jI

the conjugate
C*=R-jI

|C|l=~R*>+1I° and @ = arctan(/ / R)
C=C|(cos@+ jsinB)
Using Euler's formula,
C=C|e’

10/15/22
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Fourier Series

A function f (¢) of a continuous variable ¢ that 1s periodic
with period, 7', can be expressed as the sum of sines and

cosines multiplied by appropriate coefficients

2nn
J—t

= ce T

n=—00

where

L™ cone T'di forn=0,+142
c, —?j_mf(t)e t orn=0,=1,%2,...

10/15/22 16



Impulses and the Sifting Property (1)

A unit impulse of a continuous variable ¢ located
at t=0, denoted o(#), defined as

o 1fr=0
o(t) = .
0 ifr#0

and 1s constrained also to satisfy the identity

j_io S(t)dt =1
The sifting property J.: J(@)o(t—1ty)dt = f(to)

[ fwswat = £(0)

17



Impulses and the Sifting Property (2)

A unit impulse of a discrete variable x located
at x=0, denoted o(x), defined as
1 1fx=0
0 1fx=0

and 1s constrained also to satisfy the 1dentity

i o(x)=1

X=—00

The sifting property i f(x)o(x—x,)=f(x,)
> F()S() = £(0)

X=—00
10/15/22 18
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Impulses and the Sifting Property (3)

impulse train s, (1),

5, (1) = 3 8(t—nAT)

sat(?) FIGURE 4.3 An
impulse train.

.« =3AT —2AT —-AT 0 AT 2AT 3AT ---
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Fourier Transform: One Continuous Variable

The Fourier Transform of a continous function f (¢)

F(u)=3{f )} =] f()e > dt

The Inverse Fourier Transform of F'(u)

fO=3"F(y= | F(we ™ dp

10/15/22 20



Fourier Transform

1)

-W/2 0 W/2

S NE

FIGURE 4.4 (a) A simple func
infinity in both directions.

10/15/22

: One Continuous Variable
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Fourier Transform: Impulses

The Fourier transform of a unit impulse located at the origin:

F(u) = jz 5(t)e /™ dt

The Fourier transform of a unit impulse located at ¢ =¢,:

F=[ 8(—t)e

10/15/22
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Fourier Transform: Impulse Trains

Impulse train s,,(t), $,,(¢)= Z O(t —nAT)

The Fourier series:sa: ()

oo =3AT —=2AT —AT ¢AT/2 AT 23T—j%’é.2‘rrm '
c, =— s,r(He A dt
AT J-AT/2

. -3AT —2AT —AT 0 AT 2AT 3AT -




Fourier Transform: Impulse Trains

’27[11 72'”1 7m

( 2

S el j?Tf ek ot gy I sher 6 e
a1

[T = (-

27n zn J27wtd
AT(t)_ { (IUJATAPLJ‘ (#EAT .

__Oﬁﬁm‘

sat(t)

U =3AT —2AT —AT 0 AT 2AT 3AT --- '
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Fourier Transform: Impulse Trains

Let S(u) denote the Fourier transform of the

periodic impulse train S, . (¢)

25
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Fourier Transform and Convolution

The convolution of two functions 1s denoted

by the operator %
fO*ht)=[ f(@Oh(t-7)dr

26



Fourier Transform and Convolution

Fourier Transform Pairs

J@O)* h(t) < H(u)F (1)

J(Oh() < H(u)* F(u)



Fourier Transform of Sampled Functions

A bandlimited signal is a signal whose Fourier transform
IS zero above a certain finite frequency. In other words, if
the Fourier transform has finite support then the signal is
said to be bandlimited.

An example of a simple bandlimited signal is a sinusoid of
the form,

x(t) =sin(2x ft + 0)

10/15/22 31



Fourier Transform of Sampled Functions

F(u)

A

— -
Hiax 0 Higy

Over-sampling

1
[ — > 21leax
F(u) = AT
1 & n Criti .
— N F(y-— ritically-sampling
AT n:Z_OO (u AT ) 1
AT 2 e

under-sampling

1

—<2u
10/15/22 AT e 32



Nyquist—=Shannon sampling theorem

We can recover f(¢) from its sampled version if we can

isolate a copy of F(x) from the periodic sequence of copies
of this function contained in F(u), the transform of the
sampled function r()

Sufficient separation is guaranteed if E > 2,umaX

Sampling theorem: A continuous, band-limited function
can be recovered completely from a set of its samples if
the samples are acquired at a rate exceeding twice the
highest frequency content of the function

10/15/22 33



Nyquist—=Shannon sampling theorem

ANNAN |

—2/AT ~1/AT 1/AT 2/AT .
FIGURE 4.8
Extracting one
period of the
transform of a
? band-limited
function using an
ideal lowpass
filter.
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Aliasing

If a band-limited function is sampled at a rate that is less
than twice its highest frequency?

The inverse transform will yield a corrupted function. This
effect is known as frequency aliasing or simply as
aliasing.

10/15/22
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Aliasing

F(u)

| | — S | | -1
~3/AT —2/AT —1/AT! 0 \1/AT  2/AT  3/AT
| |
| |
| H(w)
| . |
| AT |
| | oK
0
F(w) = H(u)fl(m
| |
| |
| |
| |
| |
| |
| | -1t

“Mmax 0 M max

a
b
C

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (¢) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(w) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.
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Aliasing

f

ATl

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks
like a sine wave having a frequency much lower than the frequency of the continuous
signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis
occur every second. AT is the separation between samples.

10/15/22 37



The Discrete Fourier Transform (DFT) of One
Variable

M -1
F(u)= Zf(x)e_ﬂ”‘”/M, u=0,1,...M-1
x=0

1 M-1 .
f(x)=—> F(we ™™,  x=012,..,M-1
1=0

M =

10/15/22
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2-D Impulse and Sifting Property: Continuous

. 00 1fr=z=0
The impulse o6(¢, 2), o0(t,z) = .
0 otherwise

and [ [ 8t 2)dtdz =1

The sifting property
J’_OO J‘_OO f(t,z)o(t, z)dtdz =

10/15/22 40



2-D Impulse and Sifting Property: Discrete

: 1 ifx=y=0
The impulse o(x, ), o(x,y)= .
0 otherwise

The sifting property
i i J(x,¥)0(x,y) = f(0,0)

X=—00 y=—00

and

IDILCRILEER NN EFIENY

X ooy o0

10/15/22 41



2-D Fourier Transform: Continuous

Fuv)y={_ [ f(t.2)e?> " dids

and

f=[ [ fuv)e " dudv

10/15/22 42



2-D Fourier Transform: Continuous

o Fu =] [ faze  didz

°T/2 0Z/2

—_ Ae—jZﬂ(,ut—H/z)dtdZ
J-T/2d-7/2

AT sin(zzul) {sm(ﬂvT )}
ul’ vl

a b

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The

block is longer along the t-axis, so the spectrum is more “contracted” along the u-axis.
Compare with Fig. 4.4.
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2-D Sampling and 2-D Sampling Theorem

10/15/22

2 — D 1impulse train:

Saray (£, 2) = Z Z o(t—mAT,z—nAZ)

m=—0o0 =—0o0

sataz(t, 2)

&

FIGURE 4.14
Two-dimensional
impulse train.
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2-D Sampling and 2-D Sampling Theorem

Function f (¢, z) 1s said to be band-limited if its Fourier transform
1s 0 outside a rectangle established by the intervals [-z_ 00 ]
v_ ], that is

max 2 = max

and [-v

F(u,v)=0for |ulzp . and |v|2v__

Two-dimensional sampling theorem:
A continuous, band-limited function f(¢, z) can be recovered with

no error from a set of its samples 1f the sampling intervals are

! and AZ< 1

2 o 2v

AT<

max

10/15/22 45



2-D Sampling and 2-D Sampling Theorem

A A

Footprint of an

ideal lowpass
/ (box) filter

—
l

e |

. .
- .
LR LR

l‘l’ max

o=

10/15/22

ab

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

v (b) under-sampled
band-limited
function.
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abc Re-sampling

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)
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Aliasing in Images: Example

Re-sampling

FIGURE 4.18 Illustration of jaggies. (a) A 1024 X 1024 digital image of a computer-generated scene with
negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation.
(c) Result of blurring the image in (a) with a 5 X 5 averaging filter prior to resizing it to 25% using bilinear
interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

10/15/22 49
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Moiré patterns

Moiré patterns are often an undesired artifact of images
produced by various digital imaging and computer graphics
techniques

e. g.,, when scanning a halftone picture or ray tracing a
checkered plane. This cause of moire is a special case of
aliasing, due to under-sampling a fine reqular pattern

http://en.wikipedia.org/wiki/Moiré_pattern
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A moiré pattern
formed by
incorrectly down-
sampling the
former image
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FIGURE 4.21

A newspaper
image of size

246 X 168 pixels
sampled at 75 dpi
showing a moiré
pattern. The
moiré pattern in
this image is the
interference
pattern created
between the +45°
orientation of the
halftone dots and
the north-south
orientation of the
sampling grid
used to digitize
the image.
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FIGURE 4.22

A newspaper
image and an
enlargement
showing how
halftone dots are
arranged to
render shades of

gray.
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2-D Discrete Fourier Transform and Its

10/15/22

Inverse
DFT:
M-1N-1 —Jj2n(ux/M+vy/N)
F(u,v)=Y.> f(x,»)e
x=0 y=0

1=012,..M—-1;v=0,1,2,..,N —1;

f(x,y) 1s a digital image of size M x N.

IDFT:

Jj2r(ux/M+vy/N)

f(x, y)——ZZF(ﬂ,V)e

-1 N-1
xOyO

58



Properties of the 2-D DFT

relationships between spatial and frequency intervals

Let AT and AZ denote the separations between samples,
then the seperations between the corresponding discrete,
frequency domain variables are given by

1

T MAT
1

T NAZ

A

and Av

10/15/22 59



Properties of the 2-D DFT

translation and rotation

f e N o By, v =)
and

f(x - Xy, V- yo) &S F(’u’ V)e—1'27f(ﬂxo/M+Vyo/N)

Using the polar coordinates

x=rcos@ y=rsinf u=wcosep V=@SsIn@

results 1n the following transform pair:
f(r,0+6,)) < F(o,p+0,)

10/15/22
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Properties of the 2-D DFT
periodicity

2 — D Fourier transform and its inverse are infinitely periodic
F(uv)=Fu+kM,v)=F(u,v+k,N)=F(u+kM,v+k,N)
Jey)=fx+kM,y)=f(x,y+k,N)= f(x+kM,y+k,N)

FR) 0 o F (- i)
=M 12, (D) & F(u—M12)

e, )Y F(u—M/2,v—N/2)

10/15/22 61



Properties of the 2-D DFT

Symmetry

Frequency Domain'

Spatial Domain '
1) f(x,y)real
2) f(x.y)imaginary
3) f(x,y)real
4) f(x,y) imaginary
3) f(—x, —y) real
6) f(—x, —y) complex
7) f(x, y) complex
3) f(x.y)real and even
9) f(x, y) real and odd
10) f(x, y)imaginary and even
11) f(x, y) imaginary and odd
12) f(x.y) complex and even
13) f(x,y)complex and odd

|

{

F'(u,v) = F(—u, —v)
F'(—u, —v) = —F(u. v)
R(u,v)even; I(u, v) odd
R(u, v) odd; I(u, v) even
F'(u.v) complex

F(—u, —v) complex
F*(—u — v) complex
F(u, v)real and even
F(u, v) imaginary and odd
F(u, v) imaginary and even
F(u, v)real and odd

F(u, v) complex and even

F(u, v) complex and odd

"Recall that x. y, u. and v are discreie (integer) variables, with x and u in the range [0, M — 1], and y, and
vin the range [0, N — 1]. To say that a complex function is ¢even means that its real and imaginary parts

10/15/2%

are even, and similarly for an odd complex function.

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and /(u,v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.
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Properties of the 2-D DFT

Fourier Spectrum and Phase Angle

2-D DFT 1n polar form

F(u,v) = F(u,v)|e”""
Fourier spectrum

| F(u,v)|= [Rz (u,v)+1I°(u, V):|1/2
Power spectrum

P(u,v) = F(u,v)|’= R’ (u,v) + 1" (u,v)
Phase angle

I(u,v)}

¢(u,v)=arctan { RGiv)
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n = 200

n=10 n =950

Fourier series

a.k.a “‘everything is rotations”




Nice tutorial on Fourier transform

.( } J Fourier

Visualized =2 °




2D Fourier Transform
What does a sine look like in 2D?

— Wl Z


http://sharp.bu.edu/~slehar/fourier/fourier.html

Fourier Transform of an image

|f(ew)]
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FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
n (a) is longer in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.
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Low pass filtering in the Fourier
domain

h(w) |f(ew)]



Low pass filtering in the Fourier
domain

h(w) [f(w)]

This is a product of two functions, nota
convolution



Low pass filtering in the Fourier
domain

|h(w)f(w)] FTh(w)f(w)]



The Convolution Theorem

Convolution in the spatial domain =
multiplication in the Fourier domain

FT[A * f] = FT[A] FT[]
Works for inverse Fourier transforms too:
FT[A f] = FT[A] * FT[f]



Applying the convolution theorem
<

FT-1

FT-1




Spatial domain

sbox(x)

I gauss(x; o)

Frequency domain

b sinc(s)

U (Wou

» gauss(s; 1/o)

S

-~ + — -

sbox(x)

[T




Applw‘n the convolqun theorem

FT-1

FT-1




Applw‘n the convolqun theorem

FT-1




The “ideal” low pass filter

sinc[u,Vv] FIx,y] G[x,y]

Wait a minute, it still looks soiled!



Remember what happens when
you filter an impulse

Flxy] G[x,y]

This phenomenon with sinc known as “ringing”



Be careful what you wish for...
The “ideal” low-pass filter is not that good

produces ringing artifacts
requires infinite size
seldom what you want anyway

What went wrong?

Our goal is to remove high frequencies
Not to pass through all low frequencies untouched



Fade out the high frequencies

.

|h(w)f(w)] FTh(w)f(w)]



Applying the convolution theorem

/
FT- 1 -
-

Gaussian(o)

R¥ TS <
. ]
/ ea -
* .. i
/ . ATEN
e gy e\
1 =1 14 st
2 =) Iy
vy R ) e
P | [T, &

Gaussian(1/o)




And that’s why filtering with a
Gaussian works...



Example: Phase Angles and The Reconstructed

] o] @
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the 1ectangle n Flg 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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2-D Convolution Theorem

1-D convolution
FOXh(x) = > f(m)h(x—m)

2-D convolution

M-1N-1

S (x,y)kh(x,y) = ZO Z_;,f(m,n)h(x —m,y—n)

x=0,12,....M il;ny =0,1,2,....,N —1.
f(x,y)xh(x,y)< F(u,v)H(u,v)
J (e, »)h(x,y) < F(u,v)*H (u,v)

10/15/22
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Zero Padding

Consider two functions f(x) and h(x) composed of A and B
samples, respectively

Append zeros to both functions so that they have the same
length, denoted by P, then wraparound is avoided by
choosing

P >A+B-1

10/15/22 91



Zero Padding

Let f(x,y) and h(x,y) be two image arrays of sizes AXB and
CxD pixels, respectively. Wraparound error in their
convolution can be avoided by padding these functions

with zeros

f(x,y) 0<x<A4-land 0<y<B-1
f,(x,y)=
0 A<x<PorB<y<(Q

h (x.v) = h(x,y) 0<x<C-land 0<y<D-1
RE L/ C<x<PorD<Ly<Q

Here P2 A+C-1,0>2B+D -1

10/15/22 92



Summary

Name Expression(s)
1) Discrete Fourier M—1N—1
transform (DFT) F(u,v) = > D f(x, y)es2mux/MrvyN)
of f(x,y) x=0 y=0
2) Inverse discrete | M-1N-]
Fourier transform flx,y) = - 2 E F(u. v)e/2mlux/M+vy/N)
(IDFT) of Flu. v) MN = =0
3) Polar representation Flu, v) = |F(u. v)|e/"r)
1 12
4) Spectrum |F (u, v)| = [Rz{u, v) + I-(u, 1:}]
R = Real(F). I = Imag(F)
5) Phas | if ! I(u.v)
: ase angle SH(u, v) = tan R(w.0)
6) Power spectrum P(u.v) = |F(u. v)|?
B M-1N-1 1
7) Average value .y) = ) = ——
) Average valu flx.y) = o E%] Zﬁf(x‘ ) = 35 F0.0)
10/15/22
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Summary

Name

Expression(s)

8) Periodicity (ky and
k> are integers)

9) Convolution

10) Correlation

11) Separability

12) Obtaining the inverse
Fourier transform
using a forward

transform algorithm.

Flu.v) = Flu + kM.v) = Flu,v + k;,N)
= F{H + klM.. v+ kzN}

flx.y)=flx + kM. y) = f(x.y + k;N)

= f(x + kM. y + kxN)
M-1N-1

f(x.y)*xh(x.y) = E Ef(m.n}h(x —m.y — n)

m=l n=0

M-1N-1
f(x.y)ch(x.y) = E Ef*{mkn}h{x + m.y + n)
m=l n=U
The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.
) M-IN-1 o .
MNf'(x.y) = >, D F (u v)e Fres/M=uyi)

: ., u=0 =0 : : " :
Thisequation indicates that inputting F (i, #) into an

algorithm that computes the forward transform
(right side of above equation) yields MNF (x, y).
Taking the complex conjugate and dividing by MN
gives the desired inverse. See Section 4.11.2.
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Summary

Name

DFT Pairs

[ ) Symmeltry
properties

2) Linearity

3) Translation
(zeneral)

4) Translation
to center of

rectangle,
(MI2.NI2)

5) Rotation

6) Convolution
theorem!

the frequency

See Table 4.1

afi(x,v) + bfs(x. y) = aFj(u, v) + bF(u. v)
‘f{. X. y}EJE F[-H,D_xll-""'lrf+'l."|:|_]?l."..|!"lrl] .y F{I{ _ ::f[].. T ,1.,[]}
flx = x0.y = yo) = Flu, v)e F2rtroni)

fx.y) ()Y Fu — M/2,v — N/2)
flx = M/2,y — N/2) & F(u,v)(—1)*""

__f{.ir., "r'--'I + H”} T F{(Iﬂ., e + l['-‘l[]}

xX=rcosH y=rsinf H=wcos¢ ¥ =wsINg

f(x.y)*hix.y) = Flu, v)H(u. v)
flx.y)h(x, y) = Flu, v)y*x H(u, v)

10/15/22
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Summary

Name DFT Pairs

7} Correlation flx.y)3rh(x, y) = F'(u.v) H(u. v)

theorem' fi(x.y)h(x.v)= Flu,v)¥H(u. v)
8) Discrete unit dx.y)e=1

impulse

sin(mrua) sin(mvb)
9) Rectangle rect]a, b] < ab g iT(uatb)
(rua)  (wob)
10) Sine sin(2wupx + 27opy) <
1
j;[ﬁ{u + Muy, v+ Nuy) — 6(ve — Mug, v — N?}“}]

11) Cosine cos(2mupx + 2mvgy) <

1
;[ﬁ(u + Muy. v + Nug) + 8(u — Mug, v — Nv“}]

The following Fourier transform pairs are derivable only for continuous variables.
denoted as before by t and z for spatial variables and by o and v for frequency
variables. These results can be used for DFT work by sampling the continuous forms.

d "o \"
12) Differentiation (Tr‘) (T) flt.z) = (2ap)™(j2av)" F(u. v)
(The expressions " o
on the right a"f(t, z) a"f(t. z)
= o ] m AN - g . ,
assume that ar'm < (2mp) " Fp. v); azl < (2mv) Flp. v)

f(£oo, £00) = 0.)

. 9.2 2 (2 .
13) Gaussian A2mole 2TEHE) o Ao (P2 (4 i a constant)

10/15/22

" Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-
ciative, commutative, and distributive.



The Basic Filtering in the Frequency Domain

Why is the spectrum at
almost £45 degree stronger
than the spectrum at other
directions?

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)
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The Basic Filtering in the Frequency Domain

Modifying the Fourier transform of an image

Computing the inverse transform to obtain the processed
result

g(x, )= "{H®u,v)F(u,v)}

F(u,v) 1s the DFT of the input image
H(u,v) 1s a filter function.

10/15/22
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The Basic Filtering in the Frequency Domain

» In a filter H(u,v) that is 0 at the center of the transform
and 1 elsewhere, what's the output image?

10/15/22
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The Basic Filtering in the Frequency Domain

abc
de f

4 100
FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using

Eq.(4.7-1).We used a = 0.85 in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).



Zero-Phase-Shift Filters

g(x,y)=3"{Hu,v)F(u,v)}

F(u,v)=R(u,v)+ jl(u,v)

g(x,y) =37 [ H(u,)R(u,v)+ jH (u,v)I (u,v)]
Filters affect the real and imaginary parts equally,

and thus no effect on the phase.

These filters are called zero-phase-shift filters
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Examples: Nonzero-Phase-Shift Filters

ab

FIGURE 4.35

(a) Image resulting
from multiplying by
0.5 the phase angle
in Eq. (4.6-15) and
then computing the
IDFT. (b) The
result of
multiplying the
phase by 0.25. The
spectrum was not
changed in either of
the two cases.

ve

" Phase angleis P Il the phase/ e angle is [
iltered

multiplied by |ndesirable) ef multiplied by
0.5 0.5

10/15/22 103



Correspondence Between Filtering in the
Spatial and Frequency Domains (1)

Let H(u) denote the 1-D frequency domain Gaussian filter
H(u)=Ae™ ™

The corresponding filter in the spatial domain

2 2.2

h(x)=2rocAe" "

1. Both components are Gaussian and real
2. The functions behave reciprocally
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Correspondence Between Filtering in the
Spatial and Frequency Domains (2)

Let H(u) denote the difference of Gaussian filter

H(M) _ Ae-u2/2012 _Be-u2/2622
with 4> B and o, 2 o,

The corresponding filter in the spatial domain

2 2.2

h(x) = \/EJIAe_zﬂzglzxz — \/EO'ZAe_z” =3

High-pass filter or low-pass filter ?

10/15/22
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Correspondence Between Filtering in the
Spatial and Frequency Domains (3)

H (u) H (u)

A

a C
A bd

FIGURE 4.37

(a) A 1-D Gaussian

lowpass filter in the

frequency domain.

(b) Spatial

lowpass filter

- u > U corresponding to
h(x) (a).(c) Gaussian

& highpass filter in

h(
4

i the frequency
= domain. (d) Spatial
2[1 o[-0 highpass filter
T =T corresponding to
(c). The small 2-D

~ masks shown are
\/ \/ spatial filters we

used in Chapter 3.
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Correspondence Between Filtering in the
Spatial and Frequency Domains: Example

ab

FIGURE 4.38

(a) Image of a
building, and
(b) its spectrum.

600x600
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Correspondence Between Filtering in the
Spatial and Frequency Domains: Example

-1 0

1

=2 O

2

= ',,;/// /;////I/I/////l//%

10/15/22
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l'o‘o“ ‘:
S

ab
cd

FIGURE 4.39

(a) A spatial
mask and
perspective plot
of its
corresponding
frequency domain
filter. (b) Filter
shown as an
image. (c) Result
of filtering
Fig.4.38(a) in the
frequency domain
with the filter in
(b). (d) Result of
filtering the same
image with the
spatial filter in
(a). The results
are identical.



Image Smoothing Using Filter Domain Filters:
ILPF

H(u, v) H(u, v)
— \

u P

= D(u, v)

Sl

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.
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ILPF Filtering Example

aaaaaaaa

ab

FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.
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FIGURE 4.42 (a) Original image. (b)~(f) Results of filtering using ILPFs with cutoff
frequencies set at radi values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13,6.9, 4.3, 2.2, and (L.8% of the total, respectively.
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The Spatial Representation of ILPF

\/\/\/\/

ab

FIGURE 4.43

(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size

1000 X 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.
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Image Smoothing Using Filter Domain Filters:
BLPF

Butterworth Lowpass Filters (BLPF) of order » and
with cutoff frequency D,
1

H(u,v)=

1+[D(u,v)/ D,]"

=D (u, v)

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.
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FIGURE 4.42 (a) Original image. (b)~(f) Results of filtering using ILPFs with cutoff FIGURE 4.45 (a) Original image. (b)—(f) Results of filtering using BLPFs of order 2,
frequencies set at r: adii values 10. 30, 60. 160. and 460. as shown in Fig. 4.41(b). The \\llh cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig, 4.42.

n

power removed by these filters was 13.6.9.4.3,2.2, and 0.8% of the tote || lk\]‘&ktl\kl\ NG -RESEARCH -UNIVERSITY
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The Spatial Representation of BLPF

abcd

FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 2(), and corresponding intensity
profiles through the center of the filters (the size in all cases is 1000 > 1000 and the cutoff frequency is 5).
Observe how ringing increases as a function of filter order.
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Image Smoothing Using Filter Domain Filters:
GLPF

Gaussian Lowpass Filters (GLPF) in two dimensions 1s given

H(Z/l, V) _ e—D2 (u,v)/2c72

By letting o = D,

H(I/l, V) _ e—D2 (u,v)/2D02
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Image Smoothing Using Filter Domain Filters:
GLPF

H(u, v) H(u, v)

—v 1.0
0.667

/D.J: 100

D(u, v)

-

= ol I

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of Dj.
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FIGURE 4.42 (a) Original image. (b)—(f) Results of filtering using ILPFs with cutoff FIGURE 4.48 (a) Original i image. (b)~(f) Results of filtering using GLPFs with cutoff
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Examples of smoothing by GLPF (1)

Historically, certain computer
programs were written using
only two digits rather than
four to dafine the applicable
year. Accordingly, the
company's software may
recognize a date using 00"
as 1900 rather than the vEar

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

&

10/15/22

-~ ea

ab

FIGURE 4.49

(a) Sample text of
low resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).
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Examples of smoothing by GLPF (2)

Zif el

FIGURE 4.50 (a) Original image (784 X 732 pixels). (b) Result of filtering using a GLPF with D, = 100.
(c) Result of filtering using a GLPF with D, = 80. Note the reduction in fine skin lines in the magnified
sections in (b) and (c¢).



Examples of smoothing by GLPF (3)

Allblie

FIGURE 4.51 (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
Dy = 50. (¢) Result of using a GLPF with D, = 20. (Original image courtesy of NOAA.)
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Image Sharpening Using Frequency Domain
Filters

A highpass filter is obtained from a given lowpass filter
using

H,,(u,v)=1-H,,(u,v)

A 2-D ideal highpass filter (IHPL) is defined as
{O it D(u,v) < D,

i) =
V=11 i D) > D,
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Image Sharpening Using Frequency Domain
Filters

A 2-D Butterworth highpass filter (BHPL) 1s defined as
1

H(u,v) = 2n
g 1+[DO/D(u,v)]

A 2-D Gaussian highpass filter (GHPL) 1s defined as

H (u, V) _1— e—Dz(u,v)/zDg

10/15/22 129
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass

H(u, v)
.

— v 1.0+
> D(u, v)
H (u, v)
.
v 1.0
> D(u, v)
H(u, v)
)
Y10
>~ D(u, v)

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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The Spatial Representation of Highpass
Filters

abc

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.
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Filtering Results by IHPF

abc
FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, = 30, 60, and 160.
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Filtering Results by BHPF

abc

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with D, = 30, 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an [HPE
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Filtering Results by GHPF

2l o) E

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with D, = 30, 60, and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.
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Using Highpass Filtering and Threshold for
Image Enhancement

BHPF A
(order 4 with a cutoff
frequency 50)

/

abc

FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c¢) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards

and Technology.)
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The Laplacian in the Frequency Domain

Hu,v)=-4r>u’ +v°)
H(u,v)=—47"| (u-P/2) +(v=0/2)") |
=—47°D*(u,v)
The Laplacian image
Vif(x,y)=3" {H(u V) F(u, v)}

Enhancement is obtained
g(x, )= f(x,»)+cV'f(x,y) c=-1
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The Laplacian in the Frequency Domain

The enhanced 1mage
g(x,)=3" {F(u,v) —H(u,v)F(u,v)}
=3 {1 — H(u,v)]F(u, v)}

=5 {[1+42°D* () | F(u,v)]
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The Laplacian in the Frequency Domain

a b

FIGURE 4.58

(a) Original,
blurry image.

(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).
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Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

sk X V)= J (6, ¥) = f1p(X, )

Jip(x,y) = 3 [HLP(uav)F(”:V)]

Unsharp masking and highboost filtering
g, ¥) = f (%, )+ k7 8,0 (X, ¥)

I
|

! {:1 i —HLP(u,v)HF(u,v)}
- {1 +k *HHP(u,v)]F(u,v)}

g(x,y)

I
&
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Unsharp Masking, Highboost Filtering and
High-Frequency-Emphasis Fitering

g(x,y) =3[k +k, * H . (u,v)]| F (u,v)|
k=20 and k, =0



Gaussian Filter
D0=40

High-Frequency-Emphasis Filtering
Gaussian Filter
K1=0.5, k2=0.75

| e
c d

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian
filter. (c) Result of high-frequency-emphasis filtering using the same filter. (d) Result of
performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R. ™
Gest, Division of Anatomical Sciences, University of Michigan Medical School.)
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Homomorphic Filtering

Jf(x,y)=i(x, y)r(x,y)

3| f ()] = 3[i(x, )| 3] r(x, »)] 2
z(x,y)=In f(x,y)=Ini(x, y)+Inr(x,y)

S{z(x, y)} = S{ln f(x, y)} = S{ln i(x, y)} - S{ln r(x, y)}

Z(u,v)=F(u,v)+F.(u,v)



Homomorphic Filtering

S(u,v)=Hu,v)Z(u,v)
=Hu,v)F,(u,v)+ Hu,v)F.(u,v)
s(x,) =3 {S(u,)}
= 3! {H(u,v)E. (u,v)+ H(u,v)F, (u,v)}
= 3! {H(u,v)E. (u,V)} +37 {H(U»V)Fr (“»V)}
=i'(x,y)+r'(x,y)

5(xy) _ o (x) yrix.)

g(x,y)=e =1, (x, )1y (x, )

10/15/22
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Homomorphic Filtering

FIGURE 4.60

Summary of steps . _ .
in hOlllOEl‘lOl‘phiE f(x, y) I:|> DFT H(u, v) (DFT) 1 exp g(x,y)
filtering.

The illumination component of an image generally is
characterized by slow spatial variations, while the
reflectance component tends to vary abruptly

These characteristics lead to associating the low
frequencies of the Fourier transform of the logarithm of an

image with illumination the high frequencies with
reflectance.
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Homomorphic Filtering

—C|:D2 (u,v)/Dg]

Hu,v)=(y—-r.)|1-e +y

L

H(u, v) FIGURE 4.61
Radial cross
section of a
circularly
symmetric

L e homomorphic

Attenuate the contribution filter function.
The vertical axis is

made by illumination and at the center of
amplify the contribution made the frequency

rectangle and
v, by reflectance D(u. v) is the

distance from the
center.

D.(—u. v)
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E4.62

Ul body PET
b) Image
ced using
morphic

1g. (Original
courtesy of
ichael

sey, CTI
systems. )
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Homomorphic Filtering

ab

FIGURE

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)
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Selective Filtering

Non-Selective Filters:
operate over the entire frequency rectangle

Selective Filters

operate over some part, not entire frequency rectangle
e bandreject or bandpass: process specific bands

e notch filters: process small regions of the frequency
rectangle
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Selective Filtering:
Bandreject and Bandpass Filters

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency, and »n is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the
notation in the table.

Ideal Butterworth Gaussian

1

W W o) —

By = d0 iD= =D=Dy+— H(u.v) = 2n ey

(1, v) = 2 2 R )0 Hw,v)=1—elov)
1 otherwise D?* — D}

Hyo(u,v)=1-—Hg,(u,v)
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Selective Filtering:
Bandreject and Bandpass Filters

ab

FIGURE 4.63

(a) Bandreject
Gaussian filter.

(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity; it
is not part of the
data.
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Selective Filtering:
Notch Filters

Zero-phase-shift filters must be symmetric about the origin.
A notch with center at (uy, vy) must have a corresponding
notch at location (-ug,-vy).

Notch reject filters are constructed as products of highpass
filters whose centers have been translated to the centers of
the notches.

H , (u,v) = ﬁHk(”:V)H—k(uaV)

where H, (u,v) and H , (u,v) are highpass filters whose centers are

at (u,,v,) and (-u,,-v,), respectively.
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Selective Filtering:
Notch Filters

H,, (u,v) = ﬁHk(“aV)H—k(uaV)

where H, (u,v) and H_, (u,v) are highpass filters whose centers are

at (u,,v,) and (-u,,-v,), respectively.

A Butterworth notch reject filter of order n

3 1 |
ol _1 + [DOk / D, (u,v)]zn . _1 + [DOk /D_, (U,v)]zn 1

H,,(u,v) =

D, (u,v) z[(u—M/Z—uk)2 +(V—N/2—vk)2}l/2

D) ) 1/2
D, (uv)=|@-M/2+u) +(v=N/2+v,)" |

10/15/22 152



- ) » » S .
T AR RS - . "
gty AR o oy o e | a
L . ) R L
cd

FIGURE 4.64
R e (a) Sampled
| B . newspaper image

UL

SR -, showing a
iy e R moiré pattern.
e e (b) Spectrum.
(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

« o e d_u_F

Examples:
Notch =
Filters (1)

-------

A Butterworth notch
reject filter D,=3
and n=4 for all

notch pairs
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Examples:
Notch Filters

(2)
ab
cd

FIGURE 4.65

(a) 674 X 674
image of the
Saturn rings
showing nearly
periodic
interference.

(b) Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
interference
pattern. (¢) A
vertical notch
reject filter.

(d) Result of
filtering. The thin
black border in
(c) was added for
clarity; it is not
part of the data.
(Original image
courtesy

of Dr. Robert

A. West,
NASA/JPL.)
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FIGURE 4.66

(a) Result
(spectrum) of
applying a notch
pass filter to

the DFT of
Fig.4.65(a).

(b) Spatial
pattern obtained
by computing the
IDFT of (a).
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