
Filtering in the Frequency Domain
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Outline

► Fourier Transform

► Filtering in Fourier Transform Domain
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Fourier Series and Fourier Transform: History
► Jean Baptiste Joseph Fourier, French mathematician and physicist 

(03/21/1768-05/16/1830)  http://en.wikipedia.org/wiki/Joseph_Fourier

Orphaned: at nine

Egyptian expedition 
with Napoleon I: 
1798
Governor of Lower 
Egypt

Permanent 
Secretary of the 
French Academy of 
Sciences: 1822

Théorie analytique 
de la chaleur : 
1822

(The Analytic 
Theory of Heat)

http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_de_la_chaleur&action=edit


10/15/22 4

Fourier Series and Fourier Transform: History

► Fourier Series
Any periodic function can be expressed as the sum of sines 
and /or cosines of different frequencies, each multiplied by 
a different coefficients

► Fourier Transform
Any function that is not periodic can be expressed as the 
integral of  sines and /or cosines multiplied by a weighing 
function
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Fourier Series: Example



Fourier Transform

Fourier transform
● Decomposes any signal or image into weighted sum of sines and cosines
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Fourier Series

We want to get this 
function
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We’ll get there in the 
limit



Fourier transform

f(x) |F(𝟂)
|signal Fourier transform of 
signal
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Preliminary Concepts

1,  a complex number
             
the conjugate 
             * -

j
C R jI

C R jI

= -
= +

=

2 2| |  and arctan( / )
                | | (cos sin )
Using Euler's formula,
                | |  j

C R I I R
C C j

C C e q

q
q q

= + =
= +

=
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Fourier Series

2

A function ( ) of a continuous variable  that is periodic
with period, , can be expressed as the sum of sines and 
cosines multiplied by appropriate coefficients

                  ( )
nj t
T

n
n

f t t
T

f t c e
p¥

=-¥

= å

2/2

/2

where
1         ( )        for 0, 1, 2,...   
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T

p
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10/15/22 17

Impulses and the Sifting Property (1)
A   of a continuous variable  located 
at =0, denoted ( ), defined as

      if 0
                 ( )

0       if 0
and is constrained also to satisfy the identity

                 (

unit impulse t
t t

t
t

t

d

d

d

¥ =ì
= í ¹î

) 1t dt
¥

-¥
=ò

The  

                 ( ) ( ) (0)
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0( ) ( )f t t t dtd
¥

-¥
- =ò 0( )f t
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Impulses and the Sifting Property (2)
A   of a discrete variable  located 
at =0, denoted ( ), defined as

1       if 0
                 ( )

0       if 0
and is constrained also to satisfy the identity

                 (

unit impulse x
x x

x
x

x

x

d

d

d

=ì
= í ¹î

) 1
x

¥

=-¥

=å
The  

           ( ) ( ) (0)
x

sifting property

f x x fd
¥

=-¥

=å
0 0( ) ( ) ( )

x
f x x x f xd

¥

=-¥

- =å
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Impulses and the Sifting Property (3)

  ( ),

        ( ) ( )

T

T
n

impulse train s t

s t t n Td

D

¥

D
=-¥

= - Då
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Fourier Transform: One Continuous Variable

2

The   of a continous function ( )

         ( ) { ( )} ( ) j t

Fourier Transform f t

F f t f t e dtpµµ
¥ -

-¥
= Á = ò

1 2

The    of ( )

      ( ) { ( )} ( ) j t

Inverse Fourier Transform F

f t F F e dpµ

µ

µ µ µ
¥-

-¥
= Á = ò
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Fourier Transform: One Continuous Variable

/22 2

/2

/22
/2

( ) ( )

2 2
sin( )
( )

Wj t j t

W

Wj t j W j W
W

F f t e dt Ae dt

A Ae e e
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W
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Fourier Transform: Impulses

2

2 0

The Fourier transform of a unit impulse located at the origin:

                  ( ) ( )

                          
                           =1

j t
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F t e dt
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-
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ò

0

0

2
0

2

0 0

The Fourier transform of a unit impulse located at :

                  ( ) ( )

                          
                           =cos(2 ) sin (2 )
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Fourier Transform: Impulse Trains

  ( ),      ( ) ( )T T
n

Impulse train s t s t t n Td
¥

D D
=-¥
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2/2

/2

The Fourier series:
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Fourier Transform: Impulse Trains

2
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Fourier Transform: Impulse Trains

{ }
2

2

Let ( ) denote the Fourier transform of the
periodic impulse train ( ) 
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Fourier Transform and Convolution
The convolution of two functions is denoted 
by the operator 
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Fourier Transform and Convolution

( )   ( ) ( ) ( )f t h t H Fµ µÛ

( ) ( ) ( )   ( )f t h t H Fµ µÛ

Fourier Transform Pairs



10/15/22 31

Fourier Transform of Sampled Functions

► A bandlimited signal is a signal whose Fourier transform 
is zero above a certain finite frequency. In other words, if 
the Fourier transform has finite support then the signal is 
said to be bandlimited. 

An example of a simple bandlimited signal is a sinusoid of 
the form,

( ) sin(2 )x t ftp q= +
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Fourier Transform of Sampled Functions

( )
1 ( )

n

F
nF

T T

µ

µ
¥

=-¥

=

-
D Då

maxµ-
maxµ
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Over-sampling 
1 2
T
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1 2
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under-sampling
1 2
T
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D



10/15/22 33

Nyquist–Shannon sampling theorem

( )f t

► We can recover       from its sampled version if we can 
isolate a copy of         from the periodic sequence of copies 
of this function contained in        , the transform of the 
sampled function 

► Sufficient separation is guaranteed if 

Sampling theorem: A continuous, band-limited function 
can be recovered completely from a set of its samples if 
the samples are acquired at a rate exceeding twice the 
highest frequency content of the function

( )f t
( )F µ

( )F µ

max
1 2
T

µ>
D
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Nyquist–Shannon sampling theorem

2( ) ( ) j tf t F e dpµµ µ
¥

-¥
= ò

?
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Aliasing

If a band-limited function is sampled at a rate that is less 
than twice its highest frequency?

The inverse transform will yield a corrupted function. This 
effect is known as frequency aliasing or simply as 
aliasing.
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Aliasing
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Aliasing
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The Discrete Fourier Transform (DFT) of One 
Variable

1
2 /

0
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2-D Impulse and Sifting Property: Continuous

       if 0
The impulse ( , ),        ( , )

0        otherwise

and         ( , ) 1
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2-D Impulse and Sifting Property: Discrete

1       if 0
The impulse ( , ),        ( , )

0        otherwise
x y

x y x yd d
= =ì

= í
î

0 0 0 0

The sifting property

       ( , ) ( , ) (0,0)
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=
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2-D Fourier Transform: Continuous

2 ( )

2 ( )

       ( , ) ( , )

and

       ( , ) ( , )
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2-D Fourier Transform: Continuous

2 ( )

/2 /2 2 ( )

/2 /2

( , ) ( , )
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2-D Sampling and 2-D Sampling Theorem

2  impulse train:

               ( , ) ( , )T Z
m n

D

s t z t m T z n Zd
¥ ¥

D D
=-¥ =-¥

-

= - D - Då å
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2-D Sampling and 2-D Sampling Theorem

max max

max max

max ma

Function ( , ) is said to be band-limited if its Fourier transform
is 0 outside a rectangle established by the intervals [- , ]
and [- , ], that is
         ( , ) 0 for | |  and | |

f t z

F

µ µ
n n
µ n µ µ n n= ³ ³ x

max max

Two-dimensional sampling theorem:
A continuous, band-limited function ( , ) can be recovered with 
no error from a set of its samples if the sampling intervals are

1 1             T<  and  Z<
2 2

f t z

µ n
D D



10/15/22 46

2-D Sampling and 2-D Sampling Theorem
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Aliasing in Images: Example

Re-sampling
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Aliasing in Images: Example

Re-sampling



No prefiltering



Prefiltered sub-sampling
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Moiré patterns

► Moiré patterns are often an undesired artifact of images 
produced by various digital imaging and computer graphics 
techniques
e. g., when scanning a halftone picture or  ray tracing a 
checkered plane. This cause of moiré is a special case of 
aliasing, due to under-sampling a fine regular pattern

http://en.wikipedia.org/wiki/Moiré_pattern
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Moiré patterns
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Moiré patterns
A moiré pattern 
formed by 
incorrectly down-
sampling the 
former image



Moire Pattern
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2-D Discrete Fourier Transform and Its 
Inverse

2 ( / / )1 1

0 0

DFT:

( , ) ( , )

0,1,2,..., 1; 0,1,2,..., 1;
( , ) is a digital image of size M N.

j x M y NM N

x y
F f x y e

M N
f x y

p µ n

µ n

µ n

- +- -

= =

=

= - = -
´

åå

2 ( / / )1 1

0 0

IDFT:

1( , ) ( , )
j x M y NM N

x y
f x y F e

MN

p µ n

µ n
+- -

= =

= åå
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Properties of the 2-D DFT
relationships between spatial and frequency intervals

Let  and  denote the separations between samples,
then the seperations between the corresponding discrete,
frequency domain variables are given by

1              

1and        

T Z

M T

N Z

µ

n

D D

D =
D

D =
D
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Properties of the 2-D DFT
translation and rotation

0 0

0 0

2 ( / / )
0 0

2 ( / / )
0 0

  ( , ) ( , )
and       
 ( - , - ) ( , )

j x M y N

j x M y N

f x y e F

f x x y y F e

p µ n

p µ n

µ µ n n

µ n

+

- +

Û - -

Û

0 0

Using the polar coordinates
cos     y=rsin     = cos      = sin

results in the following transform pair:
           ( , ) ( , )

x r

f r F

q q µ w j n w j

q q w j q

=

+ Û +
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Properties of the 2-D DFT
periodicity 

1 2 1 2

2  Fourier transform and its inverse are infinitely periodic
( , ) ( , ) ( , ) ( , )
D

F F k M F k N F k M k Nµ n µ n µ n µ n
-

= + = + = + +

1 2 1 2( , ) ( , ) ( , ) ( , )f x y f x k M y f x y k N f x k M y k N= + = + = + +

02 ( / )
0( ) ( )j x Mf x e Fp µ µ µÛ -

0 / 2,     ( )( 1) ( / 2)xM f x F Mµ µ= - Û -

( , )( 1) ( / 2, / 2)x yf x y F M Nµ n+- Û - -
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Properties of the 2-D DFT
Symmetry 
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Properties of the 2-D DFT
Fourier Spectrum and Phase Angle 

( , )

1/22 2

2 2 2

2-D DFT in polar form
                     ( , ) | ( , ) |
Fourier spectrum

                   | ( , ) | ( , ) ( , )

Power spectrum
                    ( , ) | ( , ) | ( , ) ( , )
Pha

j u vF u v F u v e

F u v R u v I u v

P u v F u v R u v I u v

f=

é ù= +ë û

= = +
se angle

( , )                   (u,v)=arctan
( , )
I u v
R u v

f
é ù
ê ú
ë û



Nice tutorial on Fourier Series



Nice tutorial on Fourier transform



http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

What does a sine look like in 2D?
2D Fourier Transform

http://sharp.bu.edu/~slehar/fourier/fourier.html


Fourier Transform of an image

|f(𝟂)|f(x,y)



2D Fourier Transform
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Low pass filtering in the Fourier 
domain

|f(𝟂)|h(𝟂)



Low pass filtering in the Fourier 
domain

h(𝟂) |f(𝟂)|

This is a product of two functions, not a 
convolution



Low pass filtering in the Fourier 
domain

|h(𝟂)f(𝟂)|f(x,y) FT-1[h(𝟂)f(𝟂)]



The Convolution Theorem

Convolution in the spatial domain   =   
multiplication in the Fourier domain

FT[h﹡f	]	=	FT[h]	FT[f	]	

Works for inverse Fourier transforms too:
FT-1[h	f	]	=	FT-1[h	]﹡FT-1[f	]



Applying the convolution theorem

FT-1 =

FT-1 ﹡FT-1





Applying the convolution theorem

FT-1 =

FT-1 ﹡FT-1



Applying the convolution theorem

FT-1 =

﹡



The “ideal” low pass filter

﹡ =

F[x,y]sinc[u,v] G[x,y]

Wait a minute, it still looks soiled!



Remember what happens when 
you filter an impulse

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i h g

f e d

c b a

F[x,y] G[x,y]

H[u,v]

This phenomenon with sinc known as “ringing”



Be careful what you wish for...
The “ideal” low-pass filter is not that good
● produces ringing artifacts
● requires infinite size
● seldom what you want anyway

What went wrong?
● Our goal is to remove high frequencies
● Not to pass through all low frequencies untouched



Fade out the high frequencies

|h(𝟂)f(𝟂)|f(x,y) FT-1[h(𝟂)f(𝟂)]



Applying the convolution theorem

FT-1 =

﹡

Gaussian(𝛔)

Gaussian(1/𝛔)



And that’s why filtering with a 
Gaussian works...
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Example:  Phase Angles and The Reconstructed
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2-D Convolution Theorem 

1

0

1-D convolution 

             ( )   ( ) ( ) ( )
M

m
f x h x f m h x m

-

=

= -å

1 1

0 0

2-D convolution 

        ( , )   ( , ) ( , ) ( , )
M N

m n
f x y h x y f m n h x m y n

- -

= =

= - -åå

0,1,2,..., 1; 0,1,2,..., 1.x M y N= - = -

( , )   ( , ) ( , ) ( , )f x y h x y F u v H u vÛ

( , ) ( , ) ( , )   ( , )f x y h x y F u v H u vÛ
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Zero Padding

► Consider two functions f(x) and h(x) composed of A and B 
samples, respectively

► Append zeros to both functions so that they have the same 
length, denoted by P, then wraparound is avoided by 
choosing

P ≥A+B-1



10/15/22 92

Zero Padding

► Let f(x,y) and h(x,y) be two image arrays of sizes A×B and 
C×D pixels, respectively. Wraparound error in their 
convolution can be avoided by padding these functions 
with zeros

( , )       0 -1  0 -1
( , )

0                   p

f x y x A and y B
f x y

A x P or B y Q
£ £ £ £ì

= í £ £ £ £î

( , )       0 -1  0 -1
( , )

0                   p

h x y x C and y D
h x y

C x P or D y Q
£ £ £ £ì

= í £ £ £ £î

Here 1; 1P A C Q B D³ + - ³ + -
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Summary
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Summary
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Summary
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Summary
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The Basic Filtering in the Frequency Domain

Why is the spectrum at 
almost ±45 degree  stronger 
than the spectrum at other 

directions?
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The Basic Filtering in the Frequency Domain

► Modifying the Fourier transform of an image 

► Computing the inverse transform to obtain the processed 
result

1( , ) { ( , ) ( , )}

( , ) is the DFT of the input image
( , ) is a filter function.

g x y H u v F u v

F u v
H u v

-= Á
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The Basic Filtering in the Frequency Domain

► In a filter H(u,v) that is 0 at the center of the transform 
and 1 elsewhere, what’s the output image?
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The Basic Filtering in the Frequency Domain
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Zero-Phase-Shift Filters

1( , ) { ( , ) ( , )}g x y H u v F u v-= Á

( , ) ( , ) ( , )F u v R u v jI u v= +

[ ]1( , ) ( , ) ( , ) ( , ) ( , )g x y H u v R u v jH u v I u v-= Á +

Filters affect the real and imaginary parts equally,

and thus no effect on the phase. 

These filters are called zero-phase-shift filters
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Examples: Nonzero-Phase-Shift Filters

Even small changes in the phase angle can have 
dramatic (usually undesirable) effects on the filtered 
output

Phase angle is 
multiplied by 

0.5

Phase angle is 
multiplied by 

0.5
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Correspondence Between Filtering in the 
Spatial and Frequency Domains (1)

2 2- /2

Let H(u) denote the 1-D frequency domain Gaussian filter

                               ( ) uH u Ae s=

2 2 22

The corresponding filter in the spatial domain 

                    ( ) 2 xh x Ae p sps -=

1. Both components are Gaussian and real
2. The functions behave reciprocally
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Correspondence Between Filtering in the 
Spatial and Frequency Domains (2)

2 22 2
1 2/2 /2- -

1 2

Let ( ) denote the difference of Gaussian filter

                  ( )
                   with  and 

u u

H u

H u Ae Be
A B

s s

s s
= -
³ ³

2 2 2 2 2 2
1 22 2

1 2

The corresponding filter in the spatial domain 

     ( ) 2 2x xh x Ae Aep s p sps ps- -= -

High-pass filter or low-pass filter ?
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Correspondence Between Filtering in the 
Spatial and Frequency Domains (3)
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Correspondence Between Filtering in the 
Spatial and Frequency Domains: Example

600x600
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Correspondence Between Filtering in the 
Spatial and Frequency Domains: Example
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Image Smoothing Using Filter Domain Filters: 
ILPF
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ILPF Filtering Example 
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ILPF 
Filtering 
Example
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The Spatial Representation of ILPF
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[ ]

0

2
0

Butterworth Lowpass Filters (BLPF) of order  and 
with cutoff frequency 

1          ( , )
1 ( , ) / n

n
D

H u v
D u v D

=
+

Image Smoothing Using Filter Domain Filters: 
BLPF
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The Spatial Representation of BLPF
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2 2( , )/2

Gaussian Lowpass Filters (GLPF) in two dimensions is given 

                         ( , ) D u vH u v e s-=

Image Smoothing Using Filter Domain Filters: 
GLPF

2 2
0

0

( , )/2

By letting 

                 ( , ) D u v D

D

H u v e

s
-

=

=
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Image Smoothing Using Filter Domain Filters: 
GLPF
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Examples of smoothing by GLPF (1)



10/15/22 126

Examples of smoothing by GLPF (2)
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Examples of smoothing by GLPF (3)
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Image Sharpening Using Frequency Domain 
Filters

A highpass filter is obtained from a given lowpass filter 
using

( , ) 1 ( , )HP LPH u v H u v= -

0

0

A 2-D ideal highpass filter (IHPL) is defined as
0    if ( , )

                ( , )
1    if ( , )

D u v D
H u v

D u v D
£ì

= í >î
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Image Sharpening Using Frequency Domain 
Filters

[ ]20

A 2-D Butterworth highpass filter (BHPL) is defined as
1                ( , )

1 / ( , ) nH u v
D D u v

=
+

2 2
0( , )/2

A 2-D Gaussian highpass filter (GHPL) is defined as

                ( , ) 1 D u v DH u v e-= -
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The Spatial Representation of Highpass 
Filters
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Filtering Results by IHPF
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Filtering Results by BHPF
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Filtering Results by GHPF
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Using Highpass Filtering and Threshold for 
Image Enhancement

BHPF 
(order 4 with a cutoff 
frequency 50)
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The Laplacian in the Frequency Domain

{ }2 1

The Laplacian image 
( , ) ( , ) ( , )f x y H u v F u v-Ñ = Á

2 2 2( , ) 4 ( )H u v u vp= - +

2 2 2

2 2

( , ) 4 ( / 2) ( / 2) )

           4 ( , )

H u v u P v Q

D u v

p

p

é ù= - - + -ë û
= -

2

Enhancement is obtained 
( , ) ( , ) ( , )     -1g x y f x y c f x y c= + Ñ =
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The Laplacian in the Frequency Domain

{ }
[ ]{ }
{ }

1

1

1 2 2

The enhanced image 
( , ) ( , ) ( , ) ( , )

           1 ( , ) ( , )

           1 4 ( , ) ( , )

g x y F u v H u v F u v

H u v F u v

D u v F u vp

-

-

-

= Á -

= Á -

é ù= Á +ë û
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The Laplacian in the Frequency Domain
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Unsharp Masking, Highboost Filtering and 
High-Frequency-Emphasis Fitering

Unsharp masking and highboost filtering
( , ) ( , ) * ( , )maskg x y f x y k g x y= +

( , ) ( , ) ( , )mask LPg x y f x y f x y= -

[ ]1( , ) ( , ) ( , )LP LPf x y H u v F u v-= Á

[ ]{ }
[ ]{ }

1

1

( , ) 1 * 1 ( , ) ( , )

           1 * ( , ) ( , )
LP

HP

g x y k H u v F u v

k H u v F u v

-

-

é ù= Á + -ë û

= Á +
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Unsharp Masking, Highboost Filtering and 
High-Frequency-Emphasis Fitering

[ ]{ }1
1 2

1 2

( , ) * ( , ) ( , )

0  and  0
HPg x y k k H u v F u v

k k

-= Á +

³ ³
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Gaussian Filter
D0=40

High-Frequency-Emphasis Filtering
Gaussian Filter

K1=0.5, k2=0.75
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Homomorphic Filtering

[ ] [ ] [ ]( , ) ( , ) ( , )f x y i x y r x yÁ ¹ Á Á

( , ) ( , ) ( , )f x y i x y r x y=

( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x y= = +

= ?

{ } { } { } { }( , ) ln ( , ) ln ( , ) ln ( , )z x y f x y i x y r x yÁ = Á = Á +Á

( , ) ( , ) ( , )i rZ u v F u v F u v= +
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Homomorphic Filtering

{ }
{ }
{ } { }

1

1

1 1

( , ) ( , )

          ( , ) ( , ) ( , ) ( , )

          ( , ) ( , ) ( , ) ( , )
          '( , ) '( , )

i r

i r

s x y S u v

H u v F u v H u v F u v

H u v F u v H u v F u v
i x y r x y

-

-

- -

= Á

= Á +

= Á +Á

= +

( , ) ( , ) ( , )
          ( , ) ( , ) ( , ) ( , )i r

S u v H u v Z u v
H u v F u v H u v F u v

=
= +

( , ) '( , ) '( , )
0 0( , ) ( , ) ( , )s x y i x y r x yg x y e e e i x y r x y= = =
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Homomorphic Filtering

The illumination component of an image generally is 
characterized by slow spatial variations, while the 
reflectance component tends to vary abruptly

These characteristics lead to associating the low 
frequencies of the Fourier transform of the logarithm of an 
image with illumination the high frequencies with 
reflectance.
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Homomorphic Filtering

2 2
0( , )/( , ) ( ) 1 c D u v D

H L LH u v eg g g
é ù- ë ûé ù= - - +ê úë û

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance

Attenuate the contribution 
made by illumination and 

amplify the contribution made 
by reflectance
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Homomorphic Filtering

0

0.25
2
1
80

L

H

c
D

g
g

=
=

=
=
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Homomorphic Filtering
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Selective Filtering

Non-Selective Filters: 
operate over the entire frequency rectangle

Selective Filters
operate over some part, not entire frequency rectangle
• bandreject or bandpass: process specific bands
• notch filters: process small regions of the frequency 
rectangle
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Selective Filtering: 
Bandreject and Bandpass Filters

( , ) 1 ( , )BP BRH u v H u v= -
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Selective Filtering: 
Bandreject and Bandpass Filters
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Selective Filtering: 
Notch Filters

Zero-phase-shift filters must be symmetric about the origin.
A notch with center at (u0, v0) must have a corresponding 
notch at location (-u0,-v0).

Notch reject filters are constructed as products of highpass 
filters whose centers have been translated to the centers of 
the notches.

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 
at ( , ) and (- , - ), respectively.

Q

NR k k
k

k k

k k k k

H u v H u v H u v

H u v H u v
u v u v

-
=

=Õ
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Selective Filtering: 
Notch Filters

1

-

                         ( , ) ( , ) ( , )

where ( , ) and ( , ) are highpass filters whose centers are 
at ( , ) and (- , - ), respectively.

Q

NR k k
k

k k

k k k k

H u v H u v H u v

H u v H u v
u v u v

-
=

=Õ

1/22 2

1/22 2

( , ) ( / 2 ) ( / 2 )

( , ) ( / 2 ) ( / 2 )

k k k

k k k

D u v u M u v N v

D u v u M u v N v-

é ù= - - + - -ë û

é ù= - + + - +ë û

[ ] [ ]
3

2 2
1 0 0

A Butterworth notch reject filter of order n

1 1( , )
1 / ( , ) 1 / ( , )NR n n

k k k k k

H u v
D D u v D D u v= -

é ù é ù
= ê ú ê ú

+ +ê ú ê úë û ë û
Õ
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Examples: 
Notch 

Filters (1)

0

A Butterworth notch 
reject filter D =3 
and n=4 for all 
notch pairs
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Examples: 
Notch Filters 

(2)



10/15/22 155


