
Lecture 2. Intensity Transformation 
and Spatial Filtering
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Spatial Domain vs. Transform Domain

► Spatial domain
image plane itself, directly process the intensity values of 
the image plane

► Transform domain
process the transform coefficients, not directly process the 
intensity values of the image plane
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Spatial Domain Process

( , ) [ ( , )])
( , ) : input image
( , ) : output image
: an operator on  defined over 

     a neighborhood of point ( , )

g x y T f x y
f x y
g x y
T f

x y

=
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Spatial Domain Process
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Spatial Domain Process

Intensity transformation function
             ( )s T r=
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Some Basic Intensity Transformation 
Functions
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Image Negatives

Image negatives
1s L r= - -
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Example: Image Negatives

Small 
lesion
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Log Transformations

Log Transformations
log(1 )s c r= +
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Example: Log Transformations
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Power-Law (Gamma) Transformations

s crg=
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Example: Gamma Transformations
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Example: Gamma Transformations
Cathode ray tube 
(CRT) devices have an 
intensity-to-voltage 
response that is a 
power function, with 
exponents varying 
from approximately 
1.8 to 2.5

1/2.5s r=



10/15/22 14

Example: Gamma Transformations
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Example: Gamma Transformations
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Piecewise-Linear Transformations

► Contrast Stretching
— Expands the range of intensity levels in an image so that it spans 
the full intensity range of the recording medium or display device.

► Intensity-level Slicing
— Highlighting a specific range of intensities in an image often is of 
interest.
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Highlight the major 
blood vessels and 
study the shape of the 
flow of the contrast 
medium (to detect 
blockages, etc.)

Measuring the actual 
flow of the contrast 
medium as a function 
of time in a series of 
images
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Bit-plane Slicing
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Bit-plane Slicing
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Bit-plane Slicing
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Histogram Processing

► Histogram Equalization

► Histogram Matching

► Local Histogram Processing

► Using Histogram Statistics for Image Enhancement
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Histogram Processing

Histogram    ( )
 is the  intensity value 
 is the number of pixels in the image with intensity  

k k
th

k

k k

h r n
r k
n r

=

Normalized histogram    ( )

: the number of pixels in the image of 
     size M N with intensity  

k
k

k

k

np r
MN

n
r

=

´
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Histogram Equalization
The intensity levels in an image may be viewed as 
random variables in the interval [0, L-1]. 
Let ( ) and ( ) denote the probability density 
function (PDF) of random variables  and .

r sp r p s
r s
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Histogram Equalization

( )     0 1s T r r L= £ £ -

.   T(r) is a strictly monotonically increasing function
      in the interval 0 -1;
.   0 ( ) -1   for   0 -1.

a
r L

b T r L r L
£ £

£ £ £ £
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Histogram Equalization

.   T(r) is a strictly monotonically increasing function
      in the interval 0 -1;
.   0 ( ) -1   for   0 -1.

a
r L

b T r L r L
£ £

£ £ £ £

( )     0 1s T r r L= £ £ -

( ) is continuous and differentiable.T r

( ) ( )s rp s ds p r dr=
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Histogram Equalization

0
( ) ( 1) ( )

r

rs T r L p w dw= = - ò

0

( ) ( 1) ( )
r

r
ds dT r dL p w dw
dr dr dr

é ù= = - ê úë ûò
( 1) ( )rL p r= -

( )
( ) 1( ) ( )( ) ( 1) ( ) 1
r r r

s
r

p r dr p r p rp s L p rdsds L
dr

= = = =-æ ö -
ç ÷
è ø
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Example

2

Suppose that the (continuous) intensity values 
in an image have the PDF

2 ,       for 0 r L-1
( 1)( ) 

0,               otherwise

Find the transformation function for equalizing 
the image histogra

r

r
Lp r

ì £ £ï -= í
ïî

m.
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Example

0
( ) ( 1) ( )

r

rs T r L p w dw= = - ò

20

2( 1)
( 1)

r wL dw
L

= -
-ò

2

1
r
L

=
-
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Histogram Equalization

0

Continuous case:

( ) ( 1) ( )
r

rs T r L p w dw= = - ò

0

Discrete values:

( ) ( 1) ( )
k

k k r j
j

s T r L p r
=

= = - å

0 0

1( 1)       k=0,1,..., L-1
k k

j
j

j j

n LL n
MN MN= =

-
= - =å å
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Example: Histogram Equalization
Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096) 
has the intensity distribution shown in following table. 
Get the histogram equalization transformation function and give the 
ps(sk) for each sk.
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Example: Histogram Equalization

0

0 0
0

( ) 7 ( ) 7 0.19 1.33r j
j

s T r p r
=

= = = ´ =å 1®
1

1 1
0

( ) 7 ( ) 7 (0.19 0.25) 3.08r j
j

s T r p r
=

= = = ´ + =å 3®

2 3

4 5

6 7

4.55  5            5.67  6  
6.23  6            6.65  7  
6.86  7            7.00 7     

s s
s s
s s

= ® = ®
= ® = ®
= ® = ®
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Example: Histogram Equalization
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Figure 3.22
(a) Image from Phoenix Lander. (b) Result of histogram 
equalization. (c) Histogram of image (a). (d) Histogram of image 
(b). (Original image courtesy of NASA.)
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Question

Is histogram equalization always good?

No
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Histogram Matching
Histogram matching (histogram specification) 
— generate a processed image that has a specified histogram

Let ( ) and ( ) denote the continous probability 
density functions of the variables  and . ( ) is the 
specified probability density function.
         Let  be the random variable with the prob

r z

z

p r p z
r z p z

s

0

0

ability

                 ( ) ( 1) ( )

        Define a random variable  with the probability

                ( ) ( 1) ( )

r

r

z

z

s T r L p w dw

z

G z L p t dt s

= = -

= - =

ò

ò
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Histogram Matching

0

0

( ) ( 1) ( )

( ) ( 1) ( )

r

r

z

z

s T r L p w dw

G z L p t dt s

= = -

= - =

ò
ò

[ ]1 1( ) ( )z G s G T r- -= =
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Histogram Matching: Procedure

► Obtain pr(r) from the input image and then obtain the values of s 

► Use the specified PDF and obtain the transformation function G(z)

► Mapping from s to z

0
( 1) ( )

r

rs L p w dw= - ò

0
( ) ( 1) ( )

z

zG z L p t dt s= - =ò

1( )z G s-=
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Histogram Matching: Example

Assuming continuous intensity values, suppose that an image has 
the intensity PDF 

Find the transformation function that will produce an image 
whose intensity PDF is 

2
2 ,      for 0 -1

( 1)( )
0 ,              otherwise

r

r r L
Lp r

ì £ £ï -= í
ïî

2

3
3 ,     for 0 ( -1)

( ) ( 1)
0,                 otherwise

z

z z L
p z L

ì
£ £ï= -í

ï
î
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Histogram Matching: Example

Find the histogram equalization transformation for the input image

Find the histogram equalization transformation for the specified histogram

The transformation function

20 0

2( ) ( 1) ( ) ( 1)
( 1)

r r

r
ws T r L p w dw L dw

L
= = - = -

-ò ò

2 3

3 20 0

3( ) ( 1) ( ) ( 1)
( 1) ( 1)

z z

z
t zG z L p t dt L dt s

L L
= - = - = =

- -ò ò

2

1
r
L

=
-

1/321/3 1/32 2 2( 1) ( 1) ( 1)
1

rz L s L L r
L

é ù
é ù é ù= - = - = -ê úë û ë û-ë û
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Histogram Matching: Discrete Cases

► Obtain pr(rj) from the input image and then obtain the values of 
sk, round the value to the integer range [0, L-1].

► Use the specified PDF and obtain the transformation function 
G(zq), round the value to the integer range [0, L-1].

► Mapping from sk to zq

0 0

( 1)( ) ( 1) ( )
k k

k k r j j
j j

Ls T r L p r n
MN= =

-
= = - =å å

0
( ) ( 1) ( )

q

q z i k
i

G z L p z s
=

= - =å

1( )q kz G s-=
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Example: Histogram Matching
Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096) 
has the intensity distribution shown in the following table (on the 
left). Get the histogram transformation function and make the output 
image with the specified histogram, listed in the table on the right.
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Example: Histogram Matching

Obtain the scaled histogram-equalized values,

Compute all the values of the transformation function G,

0 1 2 3 4

5 6 7

1, 3, 5, 6, 7,
7, 7, 7.

s s s s s
s s s
= = = = =
= = =

0

0
0

( ) 7 ( ) 0.00z j
j

G z p z
=

= =å

1 2

3 4

5 6

7

( ) 0.00                         ( ) 0.00         
( ) 1.05                         ( ) 2.45
( ) 4.55                         ( ) 5.95
( ) 7.00

G z G z
G z G z
G z G z
G z

= =
= =
= =

=

0®

0® 0®
1® 2®

6®5®
7®
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Example: Histogram Matching

Obtain the scaled histogram-equalized values,

Compute all the values of the transformation function G,

0 1 2 3 4

5 6 7

1, 3, 5, 6, 7,
7, 7, 7.

s s s s s
s s s
= = = = =
= = =

0

0
0

( ) 7 ( ) 0.00z j
j

G z p z
=

= =å

1 2

3 4

5 6

7

( ) 0.00                         ( ) 0.00         
( ) 1.05                         ( ) 2.45
( ) 4.55                         ( ) 5.95
( ) 7.00

G z G z
G z G z
G z G z
G z

= =
= =
= =

=

0®

0® 0®
1® 2®

6®5®
7®

s0

s2 s3

s5 s6 s7

s1

s4
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Example: Histogram Matching

0 1 2 3 4

5 6 7

1, 3, 5, 6, 7,
7, 7, 7.

s s s s s
s s s
= = = = =
= = =

0
1
2
3
4
5
6
7

kr
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Example: Histogram Matching

0 3
1 4
2 5
3 6
4 7
5 7
6 7
7 7

k qr z®

®
®
®
®
®
®
®
®
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Example: Histogram Matching
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Example: Histogram Matching
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Example: Histogram Matching
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Example: Histogram Matching



Figure 3.24
(a) An image, and (b) its histogram.



Figure 3.25
(a) Histogram equalization transformation obtained using the histogram 
in Fig. 3.24(b). (b) Histogram equalized image. (c) Histogram of 
equalized image.



Figure 3.26

Histogram specification. (a) Specified histogram. (b) Transformation ( )qG z ,

labeled (1), 
and

( )1
kG s ,-

labeled (2). (c) Result of histogram specification. (d)
Histogram of image (c).
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Local Histogram Processing
Define a neighborhood and move its center from pixel to 
pixel

At each location, the histogram of the points in the 
neighborhood is computed. Either histogram equalization or 
histogram specification transformation function is obtained

Map the intensity of the pixel centered in the neighborhood

Move to the next location and repeat the procedure
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Local Histogram Processing: Example



Figure 3.33
(a) Original image. (b) Result of local enhancement based 
on local histogram statistics. Compare (b) with Fig. 3.32(c).
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Using Histogram Statistics for Image 
Enhancement

1

0
( )

L

i i
i

m r p r
-

=

=å
1

0
( ) ( ) ( )

L
n

n i i
i

u r r m p r
-

=

= -å
1

2 2
2

0
( ) ( ) ( )

L

i i
i

u r r m p rs
-

=

= = -å

1 1

0 0

1 ( , )
M N

x y
f x y

MN

- -

= =

= åå

[ ]
1 1

2

0 0

1 ( , )
M N

x y
f x y m

MN

- -

= =

= -åå

Average Intensity

Variance
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Using Histogram Statistics for Image 
Enhancement

1

0

Local average intensity

( )

 denotes a neighborhood

xy xy

L

s i s i
i

xy

m r p r

s

-

=

=å

1
2 2

0

Local variance

( ) ( )
xy xy xy

L

s i s s i
i
r m p rs

-

=

= -å
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Using Histogram Statistics for Image 
Enhancement: Example

0 1 2

0 1 2

( , ),  if  and 
( , )

( , ),                                         otherwise

: global  mean;     : global  standard deviation
0.4;    0.02;  0.4;  4

xy xys G G s G

G G

E f x y m k m k k
g x y

f x y

m
k k k E

s s s

s

£ £ £ìï= í
ïî

= = = =
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Spatial Filtering

A spatial filter consists of (a) a neighborhood, and (b) a
predefined operation

Linear spatial filtering of an image of size MxN with a filter 
of size mxn is given by the expression 

( , ) ( , ) ( , )
a b

s a t b
g x y w s t f x s y t

=- =-

= + +å å
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Spatial Filtering
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Spatial Correlation

The correlation of a filter ( , ) of size 
with an image ( , ), denoted as ( , )   ( , )

w x y m n
f x y w x y f x y

´

( , )    ( , ) ( , ) ( , )
a b

s a t b
w x y f x y w s t f x s y t

=- =-

= + +å å
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Spatial Convolution

The convolution of a filter ( , ) of size 
with an image ( , ), denoted as ( , )   ( , )

w x y m n
f x y w x y f x y

´

( , )    ( , ) ( , ) ( , )
a b

s a t b
w x y f x y w s t f x s y t

=- =-

= - -å å



Figure 3.35
Illustration of 1-D correlation and convolution of a kernel, w, with a function f consisting 
of a discrete unit impulse. Note that correlation and convolution are functions of the 
variable x, which acts to displace one function with respect to the other. For the 
extended correlation and convolution results, the starting configuration places the 
rightmost element of the kernel to be coincident with the origin of f. Additional padding 
must be used.
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Figure 3.58
Transfer functions of ideal 1-D filters in the frequency 
domain (u denotes frequency). (a) Lowpass filter. (b) 
Highpass filter. (c) Bandreject filter. (d) Bandpass filter. (As 
before, we show only positive frequencies for simplicity.)



Table 3.7
Summary of the four principal spatial filter types expressed 
in terms of lowpass filters. The centers of the unit impulse 
and the filter kernels coincide.
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Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise 
reduction

Blurring is used in removal of small details and bridging of 
small gaps in lines or curves

Smoothing spatial filters include linear filters and nonlinear 
filters.
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Spatial Smoothing Linear Filters

The general implementation for filtering an M N image
with a weighted averaging filter of size m n is given

( , ) ( , )
              ( , )

( , )

              where  2 1

a b

s a t b
a b

s a t b

w s t f x s y t
g x y

w s t

m a

=- =-

=- =-

´
´

+ +
=

= +

å å

å å
,     2 1.n b= +
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Two Smoothing Averaging Filter Masks
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Example: Gross Representation of Objects
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Order-statistic (Nonlinear) Filters

— Nonlinear 

— Based on ordering (ranking) the pixels contained in the 
filter mask

— Replacing the value of the center pixel with the value 
determined by the ranking result

E.g., median filter, max filter, min filter
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Example: Use of Median Filtering for Noise Reduction
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Sharpening Spatial Filters

► Foundation 

► Laplacian Operator

► Unsharp Masking and Highboost Filtering

► Using First-Order Derivatives for Nonlinear Image 
Sharpening — The Gradient 
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Sharpening Spatial Filters: Foundation

► The first-order derivative of a one-dimensional function f(x) 
is the difference

► The second-order derivative of f(x) as the difference

( 1) ( )f f x f x
x
¶

= + -
¶

2

2 ( 1) ( 1) 2 ( )f f x f x f x
x
¶

= + + - -
¶
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Sharpening Spatial Filters: Laplace Operator

The second-order isotropic derivative operator is the 
Laplacian for a function (image) f(x,y)

2 2
2

2 2
f ff
x y
¶ ¶

Ñ = +
¶ ¶

2

2 ( 1, ) ( 1, ) 2 ( , )f f x y f x y f x y
x
¶

= + + - -
¶
2

2 ( , 1) ( , 1) 2 ( , )f f x y f x y f x y
y
¶

= + + - -
¶

2 ( 1, ) ( 1, ) ( , 1) ( , 1)
           - 4 ( , )
f f x y f x y f x y f x y

f x y
Ñ = + + - + + + -
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Sharpening Spatial Filters: Laplace Operator
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Sharpening Spatial Filters: Laplace Operator

Image sharpening in the way of using the Laplacian:

2

2

              ( , ) ( , ) ( , )

where,
 ( , ) is input image, 

( , ) is sharpenend images,
-1 if ( , ) corresponding to Fig. 3.37(a) or (b)

and 1 if either of the other two filters is us

g x y f x y c f x y

f x y
g x y
c f x y

c

é ù= + Ñë û

= Ñ
= ed.
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Unsharp Masking and Highboost Filtering

► Unsharp masking
Sharpen images consists of subtracting an unsharp (smoothed) 
version of an image from the original image 
e.g., printing and publishing industry 

► Steps

1. Blur the original image

2. Subtract the blurred image from the original 

3. Add the mask to the original
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Unsharp Masking and Highboost Filtering

Let ( , ) denote the blurred image, unsharp masking is

                   ( , ) ( , ) ( , )
Then add a weighted portion of the mask back to the original
          ( , ) ( , ) * ( , )      

mask

mask

f x y

g x y f x y f x y

g x y f x y k g x y

= -

= +  0k ³

when 1, the process is referred to as highboost filtering.k >
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Unsharp Masking: Demo



Figure 3.55

(a) Unretouched “soft-tone” digital image of size  469×600pixels
(b) Image blurred using 
a

31×31 Gaussian lowpass filter with σ = 
5.(c) Mask. (d) Result of unsharp masking using Eq. (3-65) with k = 1. 

(e) and (f) Results of highboost filtering with k = 2 and k = 3, 
respectively.
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Unsharp Masking and Highboost Filtering: Example
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Image Sharpening based on First-Order Derivatives

For function ( , ), the gradient of  at coordinates ( , )
is defined as 

              grad( ) x

y

f x y f x y

f
g xf f fg

y

¶é ù
ê úé ù ¶ê úÑ º º =ê ú ¶ê úë û
ê ú¶ë û

2 2

The  of vector , denoted as ( , )

                ( , ) mag( ) x y

magnitude f M x y

M x y f g g

Ñ

= Ñ = +Gradient Image
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Image Sharpening based on First-Order Derivatives

2 2

The  of vector , denoted as ( , )

                ( , ) mag( ) x y

magnitude f M x y

M x y f g g

Ñ

= Ñ = +

( , ) | | | |x yM x y g g» +

z1 z2 z3

z4 z5 z6

z7 z8 z9

8 5 6 5( , ) | | | |M x y z z z z= - + -
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Image Sharpening based on First-Order Derivatives

z1 z2 z3

z4 z5 z6

z7 z8 z9

9 5 8 6

Roberts Cross-gradient Operators
( , ) | | | |M x y z z z z» - + -

7 8 9 1 2 3

3 6 9 1 4 7

Sobel Operators
( , ) | ( 2 ) ( 2 ) |

                | ( 2 ) ( 2 ) |
M x y z z z z z z

z z z z z z
» + + - + +

+ + + - + +
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Image Sharpening based on First-Order Derivatives
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Example



10/15/22 95

Example:

Combining 
Spatial 
Enhancement 
Methods

Goal: 

Enhance the 
image by 
sharpening it 
and by bringing 
out more of the 
skeletal detail
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Example:

Combining 
Spatial 
Enhancement 
Methods

Goal: 

Enhance the 
image by 
sharpening it 
and by bringing 
out more of the 
skeletal detail


