Lecture 2. Intensity Transformation and Spatial Filtering

Spatial Domain vs. Transform Domain

- Spatial domain image plane itself, directly process the intensity values of the image plane
- Transform domain process the transform coefficients, not directly process the intensity values of the image plane

Spatial Domain Process

$g(x, y)=T[f(x, y)])$
$f(x, y)$: input image
$g(x, y)$: output image
T : an operator on f defined over
a neighborhood of point (x, y)

Spatial Domain Process

FIGURE 3.1

A 3×3
neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Spatial domain

Spatial Domain Process

Intensity transformation function

$s=T(r)$

a b
FIGURE 3.2
Intensity
transformation functions.
(a) Contraststretching function.
(b) Thresholding function.

Some Basic Intensity Transformation Functions

FIGURE 3.3 Some basic intensity transformation functions. All curves were scaled to fit in the range shown.

Image Negatives

Image negatives $s=L-1-r$

Example: Image Negatives

FIGURE 3.4
(a) Original digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Small
lesion

Log Transformations

Example: Log Transformations

Power-Law (Gamma) Transformations

$$
S=c r^{\gamma}
$$

FIGURE 3.6 Plots of the equation $s=c r^{\gamma}$ for various values of $\gamma(c=1$ in all cases). All curves were scaled to fit in the range shown.

Example: Gamma Transformations

Gamma-corrected image

Original image as viewed on monitor

Gamma-corrected image as viewed on the same monitor
a b
c d
FIGURE 3.7
(a) Intensity ramp image. (b) Image as viewed on a simulated monitor with a gamma of 2.5. (c) Gammacorrected image. (d) Corrected image as viewed on the same monitor. Compare (d) and (a).

Example: Gamma Transformations

Example: Gamma Transformations

a b
c d
FIGURE 3.8
(a) Magnetic resonance image (MRI) of a fractured human spine.
(b)-(d) Results of applying the transformation in Eq. (3.2-3) with
$c=1$ and
$\gamma=0.6,0.4$, and
0.3 , respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

Example: Gamma Transformations

a b
c d
FIGURE 3.9
(a) Aerial image.
(b)-(d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and $\gamma=3.0,4.0$, and 5.0 , respectively. (Original image for this example courtesy of NASA.)

Piecewise-Linear Transformations

- Contrast Stretching
- Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device.
- Intensity-level Slicing
- Highlighting a specific range of intensities in an image often is of interest.

FIGURE 3.10

Contrast stretching.
(a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Highlight the major blood vessels and study the shape of the flow of the contrast medium (to detect blockages, etc.)

a b c

FIGURE 3.12 (a) Aortic angiog 3.11(a), with the range of inte using the transformation in Fig blood vessels and kidneys were

Measuring the actual flow of the contrast medium as a function of time in a series of images
 Michigan Medical School.)

Bit-plane Slicing

FIGURE 3.13
Bit-plane
representation of
an 8-bit image.

Bit-plane Slicing

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Bit-plane Slicing

a b c
FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7 ; (b) bit planes 8,7 , and 6 ; and (c) bit planes 8 , 7, 6, and 5. Compare (c) with Fig. 3.14(a).

Histogram Processing

- Histogram Equalization
- Histogram Matching
- Local Histogram Processing
- Using Histogram Statistics for Image Enhancement

Histogram Processing

Histogram $\quad h\left(r_{k}\right)=n_{k}$
r_{k} is the $k^{\text {th }}$ intensity value
n_{k} is the number of pixels in the image with intensity r_{k}

Normalized histogram $\quad p\left(r_{k}\right)=\frac{n_{k}}{M N}$
n_{k} : the number of pixels in the image of size $\mathrm{M} \times \mathrm{N}$ with intensity r_{k}

Histogram Equalization

The intensity levels in an image may be viewed as random variables in the interval [0, L-1].
Let $p_{r}(r)$ and $p_{s}(s)$ denote the probability density function (PDF) of random variables r and s.

a b
FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in

Histogram Equalization

$$
s=T(r) \quad 0 \leq r \leq L-1
$$

a. $\mathrm{T}(\mathrm{r})$ is a strictly monotonically increasing function in the interval $0 \leq r \leq L-1$;
b. $0 \leq T(r) \leq L-1$ for $0 \leq r \leq L-1$.

a b
FIGURE 3.17
(a) Monotonically increasing function, showing how multiple values can map to a single value.
(b) Strictly
monotonically increasing function. This is a one-to-one
mapping, both ways.

Histogram Equalization

$$
s=T(r) \quad 0 \leq r \leq L-1
$$

a. $\mathrm{T}(\mathrm{r})$ is a strictly monotonically increasing function in the interval $0 \leq r \leq L-1$;
b. $0 \leq T(r) \leq L-1$ for $0 \leq r \leq L-1$.
$T(r)$ is continuous and differentiable.

$$
p_{s}(s) d s=p_{r}(r) d r
$$

Histogram Equalization

$$
\begin{gathered}
s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w \\
\frac{d s}{d r}=\frac{d T(r)}{d r}=(L-1) \frac{d}{d r}\left[\int_{0}^{r} p_{r}(w) d w\right] \\
=(L-1) p_{r}(r) \\
p_{s}(s)=\frac{p_{r}(r) d r}{d s}=p_{r}(r) /\left(\frac{d s}{d r}\right)=p_{r}(r) /\left((L-1) p_{r}(r)\right)=\frac{1}{L-1}
\end{gathered}
$$

Example

Suppose that the (continuous) intensity values in an image have the PDF
$p_{r}(r)=\left\{\begin{array}{cc}\frac{2 r}{(L-1)^{2}}, & \text { for } 0 \leq \mathrm{r} \leq \mathrm{L}-1 \\ 0, & \text { otherwise }\end{array}\right.$

Find the transformation function for equalizing the image histogram.

Example

$$
s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w
$$

Histogram Equalization

Continuous case:
$s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w$

Discrete values:

$$
\begin{aligned}
s_{k} & =T\left(r_{k}\right)=(L-1) \sum_{j=0}^{k} p_{r}\left(r_{j}\right) \\
& =(L-1) \sum_{j=0}^{k} \frac{n_{j}}{M N}=\frac{L-1}{M N} \sum_{j=0}^{k} n_{j} \quad \mathrm{k}=0,1, \ldots, \mathrm{~L}-1
\end{aligned}
$$

Example: Histogram Equalization

Suppose that a 3-bit image $(\mathrm{L}=8)$ of size 64×64 pixels $(M N=4096)$ has the intensity distribution shown in following table. Get the histogram equalization transformation function and give the $\mathrm{p}_{\mathrm{s}}\left(\mathrm{s}_{\mathrm{k}}\right)$ for each s_{k}.

$\boldsymbol{r}_{\boldsymbol{k}}$	$\boldsymbol{n}_{\boldsymbol{k}}$	$\boldsymbol{p}_{\boldsymbol{r}}\left(\boldsymbol{r}_{\boldsymbol{k}}\right)=\boldsymbol{n}_{\boldsymbol{k}} / \boldsymbol{M} \boldsymbol{N}$
$r_{0}=0$	790	0.19
$r_{1}=1$	1023	0.25
$r_{2}=2$	850	0.21
$r_{3}=3$	656	0.16
$r_{4}=4$	329	0.08
$r_{5}=5$	245	0.06
$r_{6}=6$	122	0.03
$r_{7}=7$	81	0.02

Example: Histogram Equalization

$\boldsymbol{r}_{\boldsymbol{k}}$	$\boldsymbol{n}_{\boldsymbol{k}}$	$\boldsymbol{p}_{\boldsymbol{r}}\left(\boldsymbol{r}_{\boldsymbol{k}}\right)=\boldsymbol{n}_{\boldsymbol{k}} / \boldsymbol{M} \boldsymbol{N}$
$\boldsymbol{r}_{0}=0$	790	0.19
$\boldsymbol{r}_{1}=1$	1023	0.25
$\boldsymbol{r}_{2}=2$	850	0.21
$\boldsymbol{r}_{3}=3$	656	0.16
$\boldsymbol{r}_{4}=4$	329	0.08
$\boldsymbol{r}_{5}=5$	245	0.06
$\boldsymbol{r}_{6}=6$	122	0.03
$\boldsymbol{r}_{7}=7$	81	0.02

$$
\begin{aligned}
s_{0}=T\left(r_{0}\right)=7 \sum_{j=0}^{0} p_{r}\left(r_{j}\right)=7 \times 0.19=1.33 & \rightarrow 1 \\
s_{1}=T\left(r_{1}\right)=7 \sum_{j=0}^{1} p_{r}\left(r_{j}\right)=7 \times(0.19+0.25)=3.08 & \rightarrow 3 \\
s_{2}=4.55 \rightarrow 5 & s_{3}=5.67 \rightarrow 6 \\
s_{4}=6.23 \rightarrow 6 & s_{5}=6.65 \rightarrow 7 \\
s_{6}=6.86 \rightarrow 7 & s_{7}=7.00 \rightarrow 7
\end{aligned}
$$

Example: Histogram Equalization

a b c
FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogramequalized images. Right column: histograms of the images in the center column.

Figure 3.22

(a) Image from Phoenix Lander. (b) Result of histogram equalization. (c) Histogram of image (a). (d) Histogram of image (b). (Original image courtesy of NASA.)

Question

Is histogram equalization always good?

No

Histogram Matching

Histogram matching (histogram specification)

- generate a processed image that has a specified histogram Let $p_{r}(r)$ and $p_{z}(z)$ denote the continous probability density functions of the variables r and $z \cdot p_{z}(z)$ is the specified probability density function.

Let s be the random variable with the probability

$$
s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w
$$

Define a random variable z with the probability

$$
G(z)=(L-1) \int_{0}^{z} p_{z}(t) d t=s
$$

Histogram Matching

$$
\begin{aligned}
& s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w \\
& G(z)=(L-1) \int_{0}^{z} p_{z}(t) d t=s \\
& z=G^{-1}(s)=G^{-1}[T(r)]
\end{aligned}
$$

Histogram Matching: Procedure

- Obtain $p_{r}(r)$ from the input image and then obtain the values of s

$$
s=(L-1) \int_{0}^{r} p_{r}(w) d w
$$

- Use the specified PDF and obtain the transformation function $\mathrm{G}(\mathrm{z})$

$$
G(z)=(L-1) \int_{0}^{z} p_{z}(t) d t=s
$$

- Mapping from sto z

$$
z=G^{-1}(s)
$$

Histogram Matching: Example

Assuming continuous intensity values, suppose that an image has the intensity PDF

$$
p_{r}(r)=\left\{\begin{array}{cc}
\frac{2 r}{(L-1)^{2}}, & \text { for } 0 \leq r \leq L-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the transformation function that will produce an image whose intensity PDF is

$$
p_{z}(z)=\left\{\begin{array}{cc}
\frac{3 z^{2}}{(L-1)^{3}}, & \text { for } 0 \leq z \leq(L-1) \\
0, & \text { otherwise }
\end{array}\right.
$$

Histogram Matching: Example

Find the histogram equalization transformation for the input image

$$
s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w=(L-1) \int_{0}^{r} \frac{2 w}{(L-1)^{2}} d w=\frac{r^{2}}{L-1}
$$

Find the histogram equalization transformation for the specified histogram

$$
G(z)=(L-1) \int_{0}^{z} p_{z}(t) d t=(L-1) \int_{0}^{z} \frac{3 t^{2}}{(L-1)^{3}} d t=\frac{z^{3}}{(L-1)^{2}}=s
$$

The transformation function

$$
z=\left[(L-1)^{2} s\right]^{1 / 3}=\left[(L-1)^{2} \frac{r^{2}}{L-1}\right]^{1 / 3}=\left[(L-1) r^{2}\right]^{1 / 3}
$$

Histogram Matching: Discrete Cases

- Obtain $p_{r}\left(r_{j}\right)$ from the input image and then obtain the values of s_{k}, round the value to the integer range $[0, L-1]$.

$$
s_{k}=T\left(r_{k}\right)=(L-1) \sum_{j=0}^{k} p_{r}\left(r_{j}\right)=\frac{(L-1)}{M N} \sum_{j=0}^{k} n_{j}
$$

- Use the specified PDF and obtain the transformation function $\mathrm{G}\left(\mathrm{z}_{\mathrm{q}}\right)$, round the value to the integer range $[0, \mathrm{~L}-1]$.

$$
G\left(z_{q}\right)=(L-1) \sum_{i=0}^{q} p_{z}\left(z_{i}\right)=s_{k}
$$

- Mapping from s_{k} to z_{q}

$$
z_{q}=G^{-1}\left(s_{k}\right)
$$

Example: Histogram Matching

Suppose that a 3-bit image $(\mathrm{L}=8)$ of size 64×64 pixels $(M N=4096)$ has the intensity distribution shown in the following table (on the left). Get the histogram transformation function and make the output image with the specified histogram, listed in the table on the right.

$\boldsymbol{r}_{\boldsymbol{k}}$	$\boldsymbol{n}_{\boldsymbol{k}}$	$\boldsymbol{p}_{\boldsymbol{r}}\left(\boldsymbol{r}_{\boldsymbol{k}}\right)=\boldsymbol{n}_{\boldsymbol{k}} / \boldsymbol{M} \boldsymbol{N}$
$r_{0}=0$	790	0.19
$r_{1}=1$	1023	0.25
$\boldsymbol{r}_{2}=2$	850	0.21
$r_{3}=3$	656	0.16
$r_{4}=4$	329	0.08
$r_{5}=5$	245	0.06
$r_{6}=6$	122	0.03
$r_{7}=7$	81	0.02

$z_{\boldsymbol{q}}$	Specified $\boldsymbol{p}_{\boldsymbol{z}}\left(z_{\boldsymbol{q}}\right)$
$z_{0}=0$	0.00
$z_{1}=1$	0.00
$z_{2}=2$	0.00
$z_{3}=3$	0.15
$z_{4}=4$	0.20
$z_{5}=5$	0.30
$z_{6}=6$	0.20
$z_{7}=7$	0.15

Example: Histogram Matching

Obtain the scaled histogram-equalized values,

$$
\begin{aligned}
& s_{0}=1, s_{1}=3, s_{2}=5, s_{3}=6, s_{4}=7, \\
& s_{5}=7, s_{6}=7, s_{7}=7
\end{aligned}
$$

Compute all the values of the transformation function G ,

$$
G\left(z_{0}\right)=7 \sum_{j=0}^{0} p_{z}\left(z_{j}\right)=0.00 \rightarrow 0
$$

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& G\left(z_{1}\right)=0.00 \\
& G\left(z_{3}\right)=1.05
\end{aligned}
$$ \& $$
\begin{aligned}
& \rightarrow 0 \\
& \rightarrow 1
\end{aligned}
$$ \& $$
\begin{aligned}
& G\left(z_{2}\right)=0.00 \rightarrow 0 \\
& G\left(z_{4}\right)=2.45 \rightarrow 2
\end{aligned}
$$

\hline r_{k} \& ${ }^{n_{k}} G\left(z^{p_{k},(5)}\right)=\eta_{4} .54$ \& $\rightarrow 5$ \& $G\left(z_{6}\right)=5.95 \rightarrow 6$

\hline $r_{0}=0$
$r_{1}=1$
$r_{1}=2$ \& \& $\rightarrow 7$ \&

\hline $r_{2}=2$
$r_{3}=3$
$r_{3}=4$
$r_{4}=4$ \& $\underset{\substack{856 \\ \hline 59 \\ 350}}{ }$ \& \&

\hline - ${ }^{4}$ \& 329

225
0.08
0.06 \& \&

\hline $r_{s}=r_{6}$
$r_{6}=6$
r_{2} \& 122
$\begin{aligned} & 245 \\ & 81\end{aligned} 0.006$
0.02
0.02 \& \&

\hline
\end{tabular}

$z_{\boldsymbol{q}}$	Specified $\boldsymbol{p}_{\boldsymbol{z}}\left(z_{\boldsymbol{q}}\right)$
$z_{0}=0$	0.00
$z_{1}=1$	0.00
$z_{2}=2$	0.00
$z_{3}=3$	0.15
$z_{4}=4$	0.20
$z_{5}=5$	0.30
$z_{6}=6$	0.20
$z_{7}=7$	0.15

Example: Histogram Matching

Obtain the scaled histogram-equalized values,

$$
\begin{aligned}
& s_{0}=1, s_{1}=3, s_{2}=5, s_{3}=6, s_{4}=7, \\
& s_{5}=7, s_{6}=7, s_{7}=7
\end{aligned}
$$

Compute all the values of the transformation function G , $G\left(z_{0}\right)=7 \sum_{j=0}^{0} p_{z}\left(z_{j}\right)=0.00 \rightarrow 0$

$$
\begin{array}{lllll}
G\left(z_{1}\right)=0.00 & \rightarrow 0 & & G\left(z_{2}\right)=0.00 \rightarrow 0 & \\
G\left(z_{3}\right)=1.05 & \rightarrow 1 & \mathbf{s}_{\mathbf{0}} & G\left(z_{4}\right)=2.45 \rightarrow 2 & \mathbf{s}_{\mathbf{1}} \\
G\left(z_{5}\right)=4.55 & \rightarrow 5 & \mathbf{s}_{\mathbf{2}} & G\left(z_{6}\right)=5.95 \rightarrow 6 & \mathbf{s}_{\mathbf{3}} \\
G\left(z_{7}\right)=7.00 & \rightarrow 7 & \mathbf{s}_{\mathbf{4}} & \mathbf{s}_{\mathbf{5}} & \mathbf{s}_{\mathbf{6}} \\
\mathbf{s}_{\mathbf{7}} & &
\end{array}
$$

Example: Histogram Matching

$$
\begin{aligned}
& s_{0}=1, s_{1}=3, s_{2}=5, s_{3}=6, s_{4}=7, \\
& s_{5}=7, s_{6}=7, s_{7}=7
\end{aligned}
$$

Example: Histogram Matching

$$
\begin{aligned}
& r_{k} \rightarrow z_{q} \\
& 0 \rightarrow 3 \\
& 1 \rightarrow 4 \\
& 2 \rightarrow 5 \\
& 3 \rightarrow 6 \\
& 4 \rightarrow 7 \\
& 5 \rightarrow 7 \\
& 6 \rightarrow 7 \\
& 7 \rightarrow 7
\end{aligned}
$$

Example: Histogram Matching

a b
c d
FIGURE 3.22
(a) Histogram of a 3-bit image. (b) Specified histogram.
(c) Transformation function obtained from the specified histogram. (d) Result of performing histogram specification. Compare (b) and (d).

Example: Histogram Matching

Example: Histogram Matching

a b
c

FIGURE 3.24

(a) Transformation function for histogram equalization.
(b) Histogramequalized image (note the washedout appearance).
(c) Histogram of (b).

Figure 3.24

(a) An image, and (b) its histogram.

Figure 3.25

(a) Histogram equalization transformation obtained using the histogram in Fig. 3.24(b). (b) Histogram equalized image. (c) Histogram of equalized image.

Figure 3.26

Histogram specification. (a) Specified histogram. (b) Transformation $G\left(z_{q}\right)$, labeled (1), $\quad G^{-1}\left(s_{k}\right)$, labeled (2). (c) Result of histogram specification. (d) Anistogram of image (c).

Local Histogram Processing

Define a neighborhood and move its center from pixel to pixel

At each location, the histogram of the points in the neighborhood is computed. Either histogram equalization or histogram specification transformation function is obtained

Map the intensity of the pixel centered in the neighborhood
Move to the next location and repeat the procedure

Local Histogram Processing: Example

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3.

Figure 3.33

(a) Original image. (b) Result of local enhancement based on local histogram statistics. Compare (b) with Fig. 3.32(c).

Using Histogram Statistics for Image Enhancement

Average Intensity

$$
\begin{aligned}
& m=\sum_{i=0}^{L-1} r_{i} p\left(r_{i}\right)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \\
& u_{n}(r)=\sum_{i=0}^{L-1}\left(r_{i}-m\right)^{n} p\left(r_{i}\right)
\end{aligned}
$$

Variance

$$
\sigma^{2}=u_{2}(r)=\sum_{i=0}^{L-1}\left(r_{i}-m\right)^{2} p\left(r_{i}\right)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}[f(x, y)-m]^{2}
$$

Using Histogram Statistics for Image Enhancement

Local average intensity

$m_{s_{y y}}=\sum_{i=0}^{L-1} r_{i} p_{s_{x y}}\left(r_{i}\right)$
$s_{x y}$ denotes a neighborhood
Local variance
$\sigma_{s_{x y}}^{2}=\sum_{i=0}^{L-1}\left(r_{i}-m_{s_{x y}}\right)^{2} p_{s_{y y}}\left(r_{i}\right)$

Using Histogram Statistics for Image Enhancement: Example

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately $130 \times$. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Spatial Filtering

A spatial filter consists of (a) a neighborhood, and (b) a predefined operation

Linear spatial filtering of an image of size MxN with a filter of size mxn is given by the expression

$$
g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)
$$

Spatial Filtering

- Image origin

Spatial Correlation

The correlation of a filter $w(x, y)$ of size $m \times n$ with an image $f(x, y)$, denoted as $w(x, y)$ 访 $f(x, y)$

$$
w(x, y) \underset{\rightsquigarrow}{ } f(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)
$$

Spatial Convolution

The convolution of a filter $w(x, y)$ of size $m \times n$ with an image $f(x, y)$, denoted as $w(x, y) \star f(x, y)$

$$
w(x, y) \star f(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x-s, y-t)
$$

Figure 3.35

Illustration of 1-D correlation and convolution of a kernel, w, with a function f consisting of a discrete unit impulse. Note that correlation and convolution are functions of the variable x, which acts to displace one function with respect to the other. For the extended correlation and convolution results, the starting configuration places the rightmost element of the kernel to be coincident with the origin of f. Additional padding must be used.

```
&-%
```

\&-%
0
0
12428
12428
\&tarting position alignment
\&tarting position alignment
\&
\&
12428
12428
\& Starting position
\& Starting position
0}00000001000000000
0}00000001000000000
12428
12428
\& Position after 1 shift
\& Position after 1 shift
0}0000000100000000
0}0000000100000000
12428
12428
\&Position after 3 shifts
\&Position after 3 shifts
000000001400000000
000000001400000000
12428
12428
Final position }
Final position }
Correlation result
Correlation result
08242100
08242100

```
c
    0}0
82421
    &tarting position alignment
|
82421
    Starting position
```



```
    82421
        Position after 1 shift
llllllllllllll
        82421
            &Position after 3 shifts
0}00000001001000000
            82421
        Final position &
        Convolution result
    01242800
                            (o)

(a)

FIGURE 3.30
Correlation (middle row) and convolution (last row) of a 2-D filter with a 2-D discrete, unit impulse. The 0s are shown in gray to simplify visual analysis.

\section*{Figure 3.58}

Transfer functions of ideal 1-D filters in the frequency domain (u denotes frequency). (a) Lowpass filter. (b) Highpass filter. (c) Bandreject filter. (d) Bandpass filter. (As before, we show only positive frequencies for simplicity.)






\section*{Table 3.7}

Summary of the four principal spatial filter types expressed in terms of lowpass filters. The centers of the unit impulse and the filter kernels coincide.
\begin{tabular}{|c|c|}
\hline Filter type & Spatial kernel in terms of lowpass kernel, \(\boldsymbol{l} \boldsymbol{p}\) \\
\hline Lowpass & \(l p(x, y)\) \\
\hline Highpass & \(h p(x, y)=\delta(x, y)-l p(x, y)\) \\
\hline Bandreject & \[
\begin{aligned}
b r(x, y) & =l p_{1}(x, y)+h p_{2}(x, y) \\
& =l p_{1}(x, y)+\left[\delta(x, y)-l p_{2}(x, y)\right]
\end{aligned}
\] \\
\hline Bandpass & \[
\begin{aligned}
b p(x, y) & =\delta(x, y)-b r(x, y) \\
& =\delta(x, y)-\left[l p_{1}(x, y)+\left[\delta(x, y)-l p_{2}(x, y)\right]\right]
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Smoothing Spatial Filters}

Smoothing filters are used for blurring and for noise reduction

Blurring is used in removal of small details and bridging of small gaps in lines or curves

Smoothing spatial filters include linear filters and nonlinear filters.

\section*{Spatial Smoothing Linear Filters}

The general implementation for filtering an \(\mathrm{M} \times \mathrm{N}\) image with a weighted averaging filter of size \(\mathrm{m} \times \mathrm{n}\) is given
\[
g(x, y)=\frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}
\]
where \(m=2 a+1, \quad n=2 b+1\).

\section*{Two Smoothing Averaging Filter Masks}

a b
figure 3.32 Two \(3 \times 3\) smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.

FIGURE 3.33 (a) Original image, of size \(500 \times 500\) pixels (b)-(f) Results of smoothing with square averaging filter masks of sizes \(m=3,5,9,15\), and 35 , respectively. The black squares at the top are of sizes \(3,5,9,15,25,35,45\), and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from \(0 \%\) to \(100 \%\) black in increments of \(20 \%\). The background of the image is \(10 \%\) black. The noisy rectangles are of size \(50 \times 120\) pixels.
ab
c d
e f
a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

\section*{Example: Gross Representation of Objects}

a b c
FIGURE 3.34 (a) Image of size \(528 \times 485\) pixels from the Hubble Space Telescope. (b) Image filtered with a \(15 \times 15\) averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

\section*{Order-statistic (Nonlinear) Filters}
- Nonlinear
- Based on ordering (ranking) the pixels contained in the filter mask
- Replacing the value of the center pixel with the value determined by the ranking result
E.g., median filter, max filter, min filter

\section*{Example: Use of Median Filtering for Noise Reduction}

a b c
FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a \(3 \times 3\) averaging mask. (c) Noise reduction with a \(3 \times 3\) median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

\section*{Sharpening Spatial Filters}
- Foundation

Laplacian Operator

Unsharp Masking and Highboost Filtering

\section*{Using First-Order Derivatives for Nonlinear Image Sharpening - The Gradient}

\section*{Sharpening Spatial Filters: Foundation}
- The first-order derivative of a one-dimensional function \(f(x)\) is the difference
\[
\frac{\partial f}{\partial x}=f(x+1)-f(x)
\]
- The second-order derivative of \(f(x)\) as the difference
\[
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1)+f(x-1)-2 f(x)
\]

\begin{tabular}{l}
a \\
b \\
c \\
\hline
\end{tabular}

\section*{FIGURE 3.36}

Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.

\section*{Sharpening Spatial Filters: Laplace Operator}

The second-order isotropic derivative operator is the Laplacian for a function (image) \(f(x, y)\)
\[
\begin{aligned}
& \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \\
& \frac{\partial^{2} f}{\partial x^{2}}= f(x+1, y)+f(x-1, y)-2 f(x, y) \\
& \frac{\partial^{2} f}{\partial y^{2}}= f(x, y+1)+f(x, y-1)-2 f(x, y) \\
& \nabla^{2} f= f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1) \\
&-4 f(x, y)
\end{aligned}
\]

\section*{Sharpening Spatial Filters: Laplace Operator}
\begin{tabular}{|c|c|c|}
\hline 0 & 1 & 0 \\
\hline 1 & -4 & 1 \\
\hline 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 1 \\
\hline 1 & -8 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0 & -1 & 0 \\
\hline-1 & 4 & -1 \\
\hline 0 & -1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline-1 & -1 & -1 \\
\hline-1 & 8 & -1 \\
\hline-1 & -1 & -1 \\
\hline
\end{tabular}
\begin{tabular}{l|l|}
a & b \\
c & d
\end{tabular}
FIGURE 3.37
(a) Filter mask used
to implement Eq. (3.6-6)
(b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

\section*{Sharpening Spatial Filters: Laplace Operator}

Image sharpening in the way of using the Laplacian:
\[
g(x, y)=f(x, y)+c\left[\nabla^{2} f(x, y)\right]
\]
where,
\(f(x, y)\) is input image, \(g(x, y)\) is sharpenend images, \(c=-1\) if \(\nabla^{2} f(x, y)\) corresponding to Fig. 3.37(a) or (b) and \(c=1\) if either of the other two filters is used.


\section*{FIGURE 3.38}
(a) Blurred image of the North Pole of the moon.
(b) Laplacian without scaling.
(c) Laplacian with scaling. (d) Image sharpened using the mask in Fig. 3.37(a). (e) Result of using the mask in Fig. 3.37(b). (Original image courtesy of NASA.)

\section*{Unsharp Masking and Highboost Filtering}
- Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed) version of an image from the original image
e.g., printing and publishing industry
- Steps
1. Blur the original image
2. Subtract the blurred image from the original
3. Add the mask to the original

\section*{Unsharp Masking and Highboost Filtering}

Let \(\bar{f}(x, y)\) denote the blurred image, unsharp masking is
\[
g_{\text {mask }}(x, y)=f(x, y)-\bar{f}(x, y)
\]

Then add a weighted portion of the mask back to the original
\[
g(x, y)=f(x, y)+k^{*} g_{\text {mask }}(x, y) \quad k \geq 0
\]
when \(k>1\), the process is referred to as highboost filtering.

\section*{Unsharp Masking: Demo}



FIGURE 3.39 1-D
illustration of the mechanics of unsharp masking. (a) Original signal. (b) Blurred signal with original shown dashed for reference. (c) Unsharp mask. (d) Sharpened signal, obtained by adding (c) to (a).

\section*{Figure 3.55}
(a) Unretouched "soft-tone" digital image of size \(469 \times 600\) pixels
(b) Image blurred using \(31 \times 31\) Gaussian lowpass filter with \(\sigma=\) (c) Mask. (d) Result of unsharp fasking using Eq. (3-65) with \(k=1\).
(e) and (f) Results of highboost filtering with \(\mathrm{k}=2\) and \(\mathrm{k}=3\), respectively.


\section*{Unsharp Masking and Highboost Filtering: Example}


\section*{DIP-XE}

\section*{DIP-XE}

FIGURE 3.40
(a) Original image.
(b) Result of blurring with a Gaussian filter.
(c) Unsharp mask. (d) Result of using unsharp masking.
(e) Result of using highboost filtering.

\section*{Image Sharpening based on First-Order Derivatives}

For function \(f(x, y)\), the gradient of \(f\) at coordinates \((x, y)\) is defined as
\[
\nabla f \equiv \operatorname{grad}(f) \equiv\left[\begin{array}{l}
g_{x} \\
g_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
\]

The magnitude of vector \(\nabla f\), denoted as \(M(x, y)\)
Gradient Image \(\quad M(x, y)=\operatorname{mag}(\nabla f)=\sqrt{g_{x}{ }^{2}+g_{y}{ }^{2}}\)

\section*{Image Sharpening based on First-Order Derivatives}

The magnitude of vector \(\nabla f\), denoted as \(M(x, y)\)
\[
\begin{aligned}
& M(x, y)=\operatorname{mag}(\nabla f)=\sqrt{g_{x}{ }^{2}+g_{y}{ }^{2}} \\
& M(x, y) \approx\left|g_{x}\right|+\left|g_{y}\right|
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline \(\mathrm{z}_{1}\) & \(\mathrm{z}_{2}\) & \(\mathrm{z}_{3}\) \\
\hline \(\mathrm{z}_{4}\) & \(\mathrm{z}_{5}\) & \(\mathrm{z}_{6}\) \\
\hline \(\mathrm{z}_{7}\) & \(\mathrm{z}_{8}\) & \(\mathrm{z}_{9}\) \\
\hline
\end{tabular}
\[
M(x, y)=\left|z_{8}-z_{5}\right|+\left|z_{6}-z_{5}\right|
\]

\section*{Image Sharpening based on First-Order Derivatives}

Roberts Cross-gradient Operators
\[
M(x, y) \approx\left|z_{9}-z_{5}\right|+\left|z_{8}-z_{6}\right|
\]

Sobel Operators
\[
\begin{aligned}
M(x, y) \approx & \approx\left|\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)\right| \\
& +\left|\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{7}\right)\right|
\end{aligned}
\]

\section*{Image Sharpening based on First-Order Derivatives}
\begin{tabular}{|l|l|l|}
\hline\(z_{1}\) & \(z_{2}\) & \(z_{3}\) \\
\hline\(z_{4}\) & \(z_{5}\) & \(z_{6}\) \\
\hline\(z_{7}\) & \(z_{8}\) & \(z_{9}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & -1 & 0 & 0 & -1 & \\
\hline & 0 & 1 & 1 & 0 & \\
\hline -1 & -2 & -1 & -1 & 0 & 1 \\
\hline 0 & 0 & 0 & -2 & 0 & 2 \\
\hline 1 & 2 & 1 & -1 & 0 & 1 \\
\hline
\end{tabular}

\section*{\(a b\)}

FIGURE 3.42
(a) Optical image of contact lens
(note defects on
the boundary at 4
and 5 o'clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics
Corporation.)


\section*{Example:}

\section*{Combining Spatial \\ Enhancement Methods}

Goal:


Enhance the image by sharpening it and by bringing out more of the skeletal detail

\section*{Example:}

\section*{Combining Spatial \\ Enhancement Methods}

\section*{Goal:}


\author{
Enhance the image by sharpening it and by bringing out more of the skeletal detail
}```

