Lecture 2. Intensity Transformation
and Spatial Filtering



Spatial Domain vs. Transform Domain

Spatial domain

image plane itself, directly process the intensity values of
the image plane

Transform domain

process the transform coefficients, not directly process the
intensity values of the image plane
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Spatial Domain Process

g(x,y)=T1f(x,»)))
f(x,y):1nput 1image
g(x,y):output 1image

T’ : an operator on f defined over

a neighborhood of point (x, y)



Origin N\

Spatial Domain Process

Image f

L (x, y)

3 X 3 neighborhood of (x, y)

10/15/22

Spatial domain

FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y)in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.



Spatial Domain Process

Intensity transformation function
s=1(r)

s =T(r) s =T(r) a b

FIGURE 3.2

| Intensity
transformation
functions.

| (a) Contrast-

| stretching

| function.

| | (b) Thresholding
k ro k function.

Dark

Dark
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Some Basic Intensity Transformation

3L /4

Lf2

Output intensity level, s

L/4
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Functions
|
Negative
nth root
Log
nth power
Identity Inverse log

L/4 L)

Input intensity level, r

3L /4

L—-1

FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.



Image Negatives

L-1
| L]
~ Image negatives
Negative
nth root S:L_l_’,-
3L/4 — —
”
D
,02’ Log
= nth power
5 Le N
=
2
=
o)
L/ ]
Idei/lve . log
0 | |

0 L/4 L2 3L/4 7 —1

Input intensity level, r
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Example: Image Negatives

ab

FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Small
lesion



Log Transformations

L —1 .
| Log Transformations
Negative
nth root §=C log(l + r)
3L/4 — —
g" Log
E nth power
5 Lpp -
S
L/ —
Identity Inverse log
0 /4/ |
0 L/4 L2 3L /4 L—-1

Input intensity level, r
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Example: Log Transformations

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with
c=1.
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Power-Law (Gamma) Transformations

L-1 | |
v.= 0.01
y = 0.10
3L /4 y =020

-
0 y = 0.40
i
oy y = 0.67
o
1§ _ -
g 2 Y=
*g y=15
=
o vy =25

L/ y=5.0 7

y = 10.0
/ Yy
0 L/4 L/2 3L /4

Input intensity level, r

s =cr’

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
v (¢ = 1in all
cases). All curves
were scaled to fit
in the range
shown.
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Example: Gamma Transformations

a b
cd

FIGURE 3.7
(a) Intensity ramp
image. (b) Image
as viewed on a
Original image | Gamma Original image as viewed Si{nulatEd mDnitDr
correction on monitor with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare

(d) and (a).

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor
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Example: Gamma Transformations

Cathode ray tube
(CRT) devices have an
intensity-to-voltage
response that is a
power function, with
exponents varying
from approximately

Original image | Gamma Original image as viewed
correction on monitor 1 . 8 to 2 . 5

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor

10/15/22 13
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Example: Gamma

Transformations

ab
cd

FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1 and
v = 0.6,04, and
0.3, respectively.

(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University

Medical Center.) b
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Example: Gamma Transformations

FIGURE 3.9
(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with
= 1 and
v = 3.0,4.0,and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)
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Piecewise-Linear Transformations

Contrast Stretching

— Expands the range of intensity levels in an image so that it spans
the full intensity range of the recording medium or display device.

Intensity-level Slicing

— Highlighting a specific range of intensities in an image often is of
interest.

10/15/22 16
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ab
cd

FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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ab L-1
FIGURE 3.11 (a) This

Highlight the major
blood vessels and
study the shape of the
flow of the contrast
medium (to detect
blockages, etc.)

alibl e

Measuring the actual
flow of the contrast
medium as a function

FIGURE 3.12 (a) Aortic angiogl of time in a series of

3.11(a), with the range of inte

using the transformation in Fig 1MaAges

blood vessels and Kidneys were p
Michigan Medical School.)

mation of the type illustrated in Fig.
end of the gray scale. (c) Result of
lack, so that grays in the area of the

y"of Dr. Thomas R. Gest, University of
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One 8-bit byte

10/15/22

XX

Bit-plane Slicing

Bit plane 8

(most significant)

A\

Bit plane 1

(least significant)

BRRRRRRR

FIGURE 3.13
Bit-plane
representation of
an 8-bit image.
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Bit-plane Slicing

-
TTEDSTANTE
PEAVM L RILLW

@)

AESTILE129A

.
e —— . —
AMNA IIENDMY DY DOLEAMS

abc
de f
g hi
FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,

with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.



Bit-plane Slicing

LTI AR s : DF I AN
+ LAY ¥ ! .

PAIII - ——vm - e " - - AN
, NI EDSTATES Y 03 ; ) o S X EAEDMSTN
4
W/

’0. 7 “. R
v AEST1482294 " " ) v AESTINEL29A "
RAT S

AN IUND MDD DO

abc

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig. 3.14(a).
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Histogram Processing

Histogram Equalization
Histogram Matching
Local Histogram Processing

Using Histogram Statistics for Image Enhancement

10/15/22
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Histogram Processing

Histogram /A(r,)=n,
r, is the k" intensity value

n, 1s the number of pixels in the image with intensity 7,

i
MN
n,: the number of pixels in the image of

Normalized histogram p(r,) =

size M x N with intensity 7,

10/15/22 23
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I I I
Histogram of dark image

I I I
Histogram of light image

Histogram of low-contrast image

Histogram of high-contrast image

g b 04 mEb R DEMABROL e bop s
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Histogram Equalization

The intensity levels in an image may be viewed as
random variables in the interval [0, L-1].
Let p (r) and p, (s) denote the probability density

function (PDF) of random variables » and s.

p(r) ps(s)

F |

L—-1

0

ab

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
1071522 Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, 25
independently of the form of the PDF of the r’s.



Histogram Equalization

s=T(r) 0LZr<L-1

a. T(r) 1s a strictly monotonically increasing function
in the interval 0 <r < L-1;
b. 0<T(r)<L-1 for 0<r<L-I. a b

T(r) T(r) FIGURE 3.17
1 / (a) Monotonically
[l [ ool increasing '
_ | function, showing
Single | . =
value, 53 | | how multlple

T(r) —/ values can map to
Single

a single value.
value, s, 'Y (b) Strictly
monotonically
increasing
function. This is a
e -r - one-to-one

0 Multiple Single L — 1 mapping, both
values  value ways.

Sg
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Histogram Equalization

s=T(r) 0<r<L-1

a. T(r) 1s a strictly monotonically increasing function
in the interval 0 <r < L-1;
b. 0<T(r)<L-1 for 0L<r<L-1.

1'(r) 1s continuous and differentiable.

p,(s)ds = p,(r)dr

10/15/22 27



Histogram Equalization

s=T()=(L-1) jo’” p.(W)dw

T [

=(L-Dp,(r)

_pWdr _p(r)/  _p () o
A % ds j (L-Dp, ()" L1

dr
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Example

Suppose that the (continuous) intensity values

in an 1mage have the PDF

-

2r

p.(r) = (L—l)2 ’
0, otherwise

for0<r<L-1

\

Find the transformation function for equalizing

the image histogram.

29



Example

s=T(r)=(L-1) jo'” p (w)dw



Histogram Equalization

Continuous case:

s=T(r)=(L=D)| p,(w)aw

Discrete values:

Sy =T(rk)=(L—1)Zpr(r,-)

k . L—l k

J

=(L-1) -
JZ_:;MN MN <7

10/15/22

=—>»n, k=0,1...., L-1
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Example: Histogram Equalization

Suppose that a 3-bit image (L=8) of size 64 x 64 pixels (MN = 4096)
has the intensity distribution shown in following table.

Get the histogram equalization transformation function and give the
p<(sy) for each s,.

I n p.(r) = n,/MN
ro =0 790 0.19
rn=1 1023 0.25
rh, =72 850 0.21
ry =3 656 0.16
r, =4 329 0.08
rs =5 245 0.06
re = 6 122 0.03
r, =17 81 0.02




Example: Histogram Equalization

Iy ny p.(r) = n/MN
0 s
so=T(r,)=7> p,(r)=7x0.19=1.33 — 1
Jl=0
s, =T(r)=7Y p.(r,)=7x(0.19+0.25)=3.08 — 3
j=0
s, =4.55 —>5 s, =567 —6
s, =623 —6 5, =6.65 —7
s, =6.86 —7 s, =7.00 =7

10/15/22
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Example: Histogram Equalization

pr(rﬁf) Sk
A
.2:'& 0 .
204 | ®
5+ 0 ® 24 5
T + )
10+ e 284 |
osr Ty, a
S S e S SN e e
01234567 01234567
abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.
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H‘hl ||’H|Mhhuhni||||||hﬂu.
FIGURE 3.20 Left column images fIOIIl Flg 3.16. Center column: corresponding histogram-

equalized images. Right column: histograms of the images in the center column.
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192

128

64
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FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq. (3.3-8).



Figure 3.22

(a) Image from Phoenix Lander. (b) Result of histogram
equalization. (c) Histogram of image (a). (d) Histogram of image
(b). (Original image courtesy of NASA.)

cd ._ //r G "' 4
w 4

1004 J
0.03 J
0.02 B

| ‘ HHHHHM

5 “ H

255 0 63 127 191 255
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Question

Is histogram equalization always good?

NO



Histogram Matching

Histogram matching (histogram specification)
— generate a processed image that has a specified histogram

Let p (r) and p_(z) denote the continous probability
density functions of the variables » and z. p_(z) 1s the
specified probability density function.

Let s be the random variable with the probability

s=T(r)=(L-1) jor p. (w)dw

Define a random variable z with the probability

G(z)=(L-D| p.()dt=s

10/15/22 39



Histogram Matching

s=T)=(L-1) jo” p.(W)dw

G(z)=(L-1)| p.()di=s

z=G ' (s)=G" [T(r)]



Histogram Matching: Procedure

Obtain p,(r) from the input image and then obtain the values of s
s=(L=D] p,(w)aw

Use the specified PDF and obtain the transformation function G(z)
G(z)=(L=D)| p.(t)dt=s

Mapping from s to z

z=G'()

10/15/22
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Histogram Matching: Example

Assuming continuous intensity values, suppose that an image has

the intensity PDF

p,(r) =1

.

-

2r
(L-1)*"
0,

for0<r<L-1

otherwise

Find the transformation function that will produce an image
whose intensity PDF is

-

3z°

p.(z) =+

.

10/15/22

TSk for 0<z<(L-1)

0, otherwise
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Histogram Matching: Example

Find the histogram equalization transformation for the input image

s=T(r)=(L—- 1).[ p,(w)dw= (L= l)j 0 (L - 1) dW:L—l

Find the histogram equalization transformation for the specified histogram

3
A

G(z)=(L- 1)j p.(t)dt = (L - 1)j _— 1) (L—I)ZZS

The transformation function
2

z=[@ -] {(L 1y J [@-p~]

10/15/22 43




Histogram Matching: Discrete Cases

Obtain p,(r;) from the input image and then obtain the values of
S, round the value to the integer range [0, L-1].

=T(r,) :(L_I)Zpr(rj) - L= I)Z

Use the specified PDF and obtain the transformation function
G(z,), round the value to the integer range [0, L-1].

G(,)=(L-DY p.(s)=s5,

Mapping from s, to z,

= G_l(Sk)

10/15/22
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Example: Histogram Matching

Suppose that a 3-bit image (L=8) of size 64 x 64 pixels (MN = 4096)
has the intensity distribution shown in the following table (on the
left). Get the histogram transformation function and make the output
image with the specified histogram, listed in the table on the right.

I n,, p.(r) = n/MN Specified
Zg P:(2)
ro="0 790 0.19
n=1 1023 0.25 2 =0 0
- 71 =1 0.00
rp =2 850 0.21 2 =2 0.00
r3 = 3 656 0.16 :; =3 0.15
r, =4 329 0.08 24 = 4 0.20
rs =5 245 0.06 Zs =5 0.30
re = 6 122 0.03 Z6 = 6 0.20
r; =17 81 0.02 27 =1 0.15

10/15/22
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Example: Histogram Matching

Obtain the scaled histogram-equalized values,
s, =18, =3,5,=5,8,=0,5, =7,
S =71,8 =71,8,=17.
Compute all the values of the transformation function G,

0
G(z,)=7) p.(z,)=0.00 — 0
j=0

G(z)=0.00 —( G(z,)=0.00 = 0
G(z,)=1.05 —1 G(z,)=2.45 =2 Specified
3 v : e P:(z,)
Iy ny G{Zpsﬁ__l[/gé —5 G(Z6) =595 —> 6 20=0 0.00
rp=20 790 0.19 71 =1 0.00
=1 1023 0.25 - .
noo s00(27) 7700 = 7 S 8?2
rs=3 656 0.16 :4 _ 4 020
r, =4 329 0.08 . — 5
=S 245 0.06 G 8'28
re = 6 122 0.03 26 =6 20
ry =1 81 0.02 z7=17 0.15




10/15/22

Example: Histogram Matching

Obtain the scaled histogram-equalized values,
s, =18, =3,5,=5,8,=0,5, =7,
S =71,8 =71,8,=17.
Compute all the values of the transformation function G,

0
G(z,)=7) p.(z,)=0.00 — 0
j=0

G(z)=0.00 —( G(z,)=0.00 > 0
G(z,)=105 —1 sy G(z,)=245 >2 S
G(z)=4.55 —5 S22 (G(z)=595 >6 s;
G(z,)=7.00 —7 S4 Ss Se¢ Sy

47
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Example: Histogram Matching

s, =1,8, =3,5,=95,5,=6,5, =7,

S =1,8,=7,8,=7.

48

7, Sk — 4 q
0 1 — 3
1 3 —> 4
2 S — 5
3 6 —> 6
A 7 — 7
5
6
7

\|
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Example: Histogram Matching
no— 2z,
0—-3
1—>4
2—5
356
4 —77
S—>7
6—>7
T —7

49
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Example: Histogram Matching

pr(rk)

30 +
25
20
A5
d0
05+

p.(z,)

w4

I"'-Zq

a b
c d

FIGURE 3.22

(a) Histogram of a
3-bit image. (b)
Specified
histogram.

(c) Transformation
function obtained
from the specified
histogram.

(d) Result of
performing
histogram
specification.
Compare

(b) and (d).
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Example: Histogram Matching

Number of pixels ( X 10%)

ab

FIGURE 3.23
(a) Image of the
Mars moon

Phobos taken by
NASA’s Mars
Global Surveyor.
(b) Histogram.
— (Original image
courtesy of
NASA.)

64 128 192
Intensity

255
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255

192

128

Output intensity

(o))
SN

Py
=
S

) o
n [}
S D

Number of pixels ( X 10%)
p—
9
wn

Example: Histogram Matching

|

64

128
Input intensity

192

64

128
Intensity

192

| g
(AU i npannie b

255

ab
=

FIGURE 3.24

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram

of (b).
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e X
) o
G S

Number of pixels ( X 10%)
(98]
4
S

255

192

128

Output intensity

64

Number of pixels ( X 10%)

0 64 128 192 255 |
Intensity
| | | }
/
/
’
= e
1 II
(1) — ;
/
L. % —
ot
J—@
’ o
4
’/
Y L Ll I
0 64 128 192 253
Input intensity
l | |
l I I
0 64 128 192 255

Intensity

ac

b

d

FIGURE 3.25

(a) Specified
histogram.

(b) Transformations.
(c) Enhanced image
using mappings
from curve (2).

(d) Histogram of (c).
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Figure 3.24

(a) An image, and (b) its histogram.

0.12

0.10

0.08 F

0.06 +

0.04 +

o .02 F

127 191 255



Figure 3.25

(a) Histogram equalization transformation obtained using the histogram
in Fig. 3.24(b). (b) Histogram equalized image. (c) Histogram of
equalized image.

71&)~4\

127 191
T

k
0.12

0.10

127 101 255
S

2 8 B = =



Figure 3.26

Histogram specification. (a) Specified histogram. (b) TransformationG(Zq),
labeled (1), G" (Sk)’ labeled (2). (c) Result of histogram specification. (d)
Bidtogram of image (c).

0.020

ab :
cd
(1)
0.016
191 7
0.012
127 +
0.008
”
6 (2)— .
0.004 r/,
0 0 .
0 6. 1 191 0 63 127 191 S
0.12 :
p(z,)
0.10
0.08
0.06
0.04
0.02
. ’ ll“l“llllum il

0 63 127 191 255
:q
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Local Histogram Processing

Define a neighborhood and move its center from pixel to
pixel

At each location, the histogram of the points in the
neighborhood is computed. Either histogram equalization or
histogram specification transformation function is obtained

Map the intensity of the pixel centered in the neighborhood

Move to the next location and repeat the procedure

57



Local Histogram Processing: Example

abc

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.
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Figure 3.33

(a) Original image. (b) Result of local enhancement based
on local histogram statistics. Compare (b) with Fig. 3.32(c).

. . - - .
~
-




Using Histogram Statistics for Image
Enhancement

Average Intensity  ; _; 1 MoIN-]

m=> r.p(r) =22 )
i=0

x=0 y=0

0, (r) = Y (1, =m)" p(r;)

Variance | Moy

0’ =u,(r) = 3 (1= m) p(r)= 3y S 3 [/ )]

x=0 y=0

10/15/22 60



Using Histogram Statistics for Image
Enhancement

Local average intensity
L—-1
m, = np, (1;)
i=0
s, denotes a neighborhood

Local variance
2 — 2
o, =) .(-m_)'p, (1))
=0

10/15/22
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Using Histogram Statistics for Image
Enhancement: Example

E f(x,y), itm, <kymg and kio; <o, <k,04

Sy ):{ f(x, ), otherwise

m,. : global mean; o :global standard deviation
kO — 049 kl = 002, k2 = 04, E =4

] el

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130X.
(b) Result of global histogram equalization. (¢) Image enhanced using local histogram
statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological
Sciences, University of Oregon, Eugene.)
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Spatial Filtering

A spatial filter consists of (a) a neighborhood, and (b) a
predefined operation

Linear spatial filtering of an image of size MxN with a filter
of size mxn is given by the expression

g(x,y) = Z ZW(S ) f(x+s,y+1)

S=—aq t=

63



Spatial Filtering

iimage origin

\ Filter mask
N | —1
f
Image pixels —/

Image

w(0,0) | w(0,1)

=

w(l,-1) w(1,0) w(l,1)

Filter coefficients

fx—=1,y-1) fx—1y+1)

fx+1,y=1)| fix+1y) |[fx+1Ly+1)

10/15/22

Pixels of image
section under filter
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Spatial Correlation

The correlation of a filter w(x, y) of size mxn

with an 1mage f(x, y), denoted as w(x, y)%f (x, y)

w(x, y) ¥ f(x,y) = Z ZW(S ) f(x+s,y+1)

S=—a =

65



10/15/22

Spatial Convolution

The convolution of a filter w(x, y) of size m x n

with an 1mage f(x, y), denoted as w(x, y)x f (x, y)

w(x, y)k f(X,y) = Z ZW(S t)f(x—s,y—1)

S=—al=

66



Figure 3.35

Illustration of 1-D correlation and convolution of a kernel, w, with a function f consisting
of a discrete unit impulse. Note that correlation and convolution are functions of the
variable x, which acts to displace one function with respect to the other. For the
extended correlation and convolution results, the starting configuration places the
rightmost element of the kernel to be coincident with the origin of f. Additional padding

b d Correlation Convolution
must be used. o
/- Origin f w 7= Origin f w rotated 180°
(a) 0O0O0O1T00DO0O0 12428 O001T000O0 82421 (1)
{
(b) 0Oo001T00O00 O00100O00 ()
12428 82421
Lt Starting position alignment t Starting position alignment
i Zero padding ! § Zero padding ——
o | r~ | Egen | r
(c) OO0O0O00T1TODO0OODO0ODO0ODO0 O0000T1TO0ODODOOD (k)
12428 82421
L Starting position L Starting position
(d) OO0O000DT1TO0ODOO0ODO0OO0 O0000T1TO0ODODOOD (1))
12428 82421
L Position after 1 shift L Position after 1 shift
[k:' OO0O000OT1TO0ODOODODOO O0000T1TO0ODO0OODODOD (m)
12428 82421
L position after 3 shifts L Position after 3 shifts
(f) DO0O0O0O0OT1TOO0ODO0OO0DO0O0 00000 T1TOODO0OO0DO0OD0 (n)
12428 82421
Final position - Final position —
Correlation result Convolution result
(g) 08242100 01242800
Extended (full) correlation result Extended (full) convolution result

(h) 000824210000 000124280000 (p)



e Origin
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0
0
0

0

J(x, y)
()
()
()
()
()

(a)

--.l-lhl—'-g

ka2l

[ SR R

OOy b~

FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
filter with a 2-D
discrete, unit
impulse. The Os
are shown in gray
to simplify visual
analysis.
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Figure 3.58

Transfer functions of ideal 1-D filters in the frequency
domain (u denotes frequency). (a) Lowpass filter. (b)
Highpass filter. (c) Bandreject filter. (d) Bandpass filter. (As
before, we show only positive frequencies for simplicity.)

a l) 3
cd Lowpass filter Highpass filter
1 |5
Passband Stopband Stopband Passband
3 > U 7 > U
A
Bandreject filter Bandpass filter
1 l—Stopband b o Passband
Passband Passband Stopband Stopband

u U, u, U,



Table 3.7

Summary of the four principal spatial filter types expressed

in terms of lowpass filters. The centers of the unit impulse
and the filter kernels coincide.

Filter type Spatial kernel in terms of lowpass kernel, Ip
Lowpass Ip(x,y)

Highpass hp(x,y)=0(x,v)—Ip(x,y)
Bandreject br(x,y)=Ip;(x,y)+ hp,(x,y)

=Ip,(x,y)+ [6(‘\‘._\‘) -~ //’3(-“'.")]
Bandpass bp(x,y)=d&(x,y)—br(x,y)
= d(x,y) - [/p, (x,y)+ [6( X,y)— /l’:(-"-.")l]
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Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise
reduction

Blurring is used in removal of small details and bridging of
small gaps in lines or curves

Smoothing spatial filters include linear filters and nonlinear
filters.
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Spatial Smoothing Linear Filters

The general implementation for filtering an M x N 1image

with a weighted averaging filter of size m xn 1s given

Z ZW(S HDf(x+s,y+t)
g(xay)_ ===
Z ZW(S t)

where m=2a+1, n=2b+1.
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Two Smoothing Averaging Filter Masks

10/15/22

(]

(]

(]

ab

FIGURE 3.32 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli-
er in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.
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FIGURE 3.33 (a) Original image, of size 500 > 500 pixels (b)—(f) Results of smoothing
with square averaging filter masks of sizes m = 3,5,9, 15, and 35, respectively. The black
squares at the top are of sizes 3,5,9, 15,25, 35,45, and 55 pixels, respectively; their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 RERE N B . RN N N .
pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%

black in increments of 20%. The background of the image is lﬂ%’

o black. The noisy
rectangles are of size 50 * 120 pixels. oeoe : Y

aaaaaadaadd aaaaadadd

o
L ="

..l.... ...-.-
d d
aaaaaaad yvaaaaaad

22 1 1 R
wd o
- .! Q'Q!
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Example: Gross Representation of Objects

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c¢) Result of thresholding (b). (Original image courtesy of NASA.)
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Order-statistic (Nonlinear) Filters

— Nonlinear

— Based on ordering (ranking) the pixels contained in the
filter mask

— Replacing the value of the center pixel with the value
determined by the ranking result

E.g., median filter, max filter, min filter
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Example: Use of Median Filtering for Noise Reduction

T
SA

abc

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 x 3 averaging mask. (c¢) Noise reduction with a 3 x 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Sharpening Spatial Filters

Foundation

Laplacian Operator
Unsharp Masking and Highboost Filtering

Using First-Order Derivatives for Nonlinear Image
Sharpening — The Gradient
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Sharpening Spatial Filters: Foundation

The first-order derivative of a one-dimensional function f(x)
is the difference

of

a:

J(x+1D)—=f(x)

The second-order derivative of f(x) as the difference

TS e+ fr=1) =21 ()

o:
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Intensity

W o= b

= = M

J Intensity transition

-8 (W a— = -u—-um
_\-Cbnstant “u /
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N /
— \@)— (B @

FIGURE 3.36
[llustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.
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Sharpening Spatial Filters: Laplace Operator

The second-order isotropic derivative operator is the
Laplacian for a function (image) f(x,y)

o’f 0
w0101
ox> oy’

‘;{ — fG+ L)+ =L ) =21 )

gy{ =fxy+h+ (% y-1)-21(x)

Vif =+ L)+ f(x=Ly)+ f(x,p+ D)+ f(x, y
'4f(xay)

~1)
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Sharpening Spatial Filters:

_aplace Operator

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 —1 —1
~1 4 -1 -1 8 ~1
0 -1 0 -1 ~1 ~1

ab
c d

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.
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Sharpening Spatial Filters: Laplace Operator

Image sharpening in the way of using the Laplacian:

g(x,9) = f(x,3)+c| V2 f(x,) ]
where,
f(x, y) 1s input 1mage,
2(x, y) 1s sharpenend 1mages,
c=-1if V* f(x,y) corresponding to Fig. 3.37(a) or (b)

and ¢ =1 if either of the other two filters 1s used.
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a
b ¢
d e

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)
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Unsharp Masking and Highboost Filtering

Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image

e.g., printing and publishing industry
Steps

1. Blur the original image

2. Subtract the blurred image from the original

3. Add the mask to the original
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Unsharp Masking and Highboost Filtering

Let ?(x, y) denote the blurred image, unsharp masking is

Zast () = [ (1, 0) = [ (x,)
Then add a weighted portion of the mask back to the original

gx,y)=f(x,y)+k*g,..(x,y) k=0

when k > 1, the process is referred to as highboost filtering.
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/01‘iginal signal

/f -
Blurred signal
-~

Unsharp mask

/\

N/

Sharpened signal

Unsharp Masking: Demo

Lo oW

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking,
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).
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Figure 3.55

(a) Unretouched “soft-tone” digital image of siz&t69*600pixels

(b) Image blurred using 31%31 Gaussian lowpass filter with o =

dc) Mask. (d) Result of unsharp masking using Eq. (3-65) with k = 1.
(e) and (f) Results of highboost filtering with k = 2 and k = 3,
respectively.




Unsharp Masking and Highboost Filtering: Example

DIP-XE [l
D | P-X FgIGURE 3.40

(a) Original

image.
D I P—X (b) Result of
blurring with a
Gaussian filter.

(c) Unsharp
Dl P—X mask. (d) Result
of using unsharp
masking.

(e) Result of
D | P‘X using highboost

filtering.



Image Sharpening based on First-Order Derivatives

For function f (x, y), the gradient of / at coordinates (x, y)

1s detfined as

T

B 18| | ox
Vi =grad(f)= o |7 or
|l

The magnitude of vector Vf, denoted as M (x, y)

Gradient Image M (x, y) =mag(Vf) = \/gx2 T gy2
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Image Sharpening based on First-Order Derivatives

The magnitude of vector Vf, denoted as M (x, y)

M(x,y)=mag(Vf) = /g  +g,’

M(x,y)~ g |+]g,|

M (x,y) = 2y — 25 | +| 25 — 2
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Image Sharpening based on First-Order Derivatives

Roberts Cross-gradient Operators
M(x,y)~ zy — z5 | +| zg — z4 |

Sobel Operators

M(x,y) & (z; +22z3+2y) = (2, + 22, + z3) |
4 | £ | 43 +|(z,+2z, +25)—(2,+2z,+z,) |
Zs | Zs | Z¢
Z7 | 28 | 49

10/15/22
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Image Sharpening

10/15/22

<1

<2

73

24 25 <6

<7 <3 <9
-1 0 0 -1
0 1 1 0
-1 =2 -1 -1 0
0 0 0 -2 0
1 2 1 -1 0

nased on First-Order Derivatives

a
2| &
de

FIGURE 3.41

A 3 X 3 region of
an image (the zs
are intensity
values).

(b)—(c) Roberts
cross gradient
operators.
(d)—(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.
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Example

ab

FIGURE 3.42

(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics

Corporation.)




Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail

10/15/22

a b
cd

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a).(c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).
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Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail

10/15/22

e f
g h

FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(¢) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)
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