Tiling of the time frequency plane

Figure 6.3

Basis vectors (for $\mathrm{N}=16$) of some commonly encountered transforms: (a) Fourier basis (real and imaginary parts), (b) discrete Cosine basis, (c) Walsh-Hadamard basis, (d) Slant basis, (e) Haar basis, (f) Daubechies basis, (g) Biorthogonal Bspline basis and its dual, and (h) the standard basis, which is included for reference only (i.e., not used as the basis of a transform).
DFT

$\begin{aligned} & \text { a b c d } \\ & \text { e f g h } \end{aligned}$	$u=0$ $u=1$	\|timimestarevert
	$u=2$	
	$u=3$	
	$u=4$	
	$u=5$	
	$u=6$	\|rovicotovitc
	$u=7$	
	$u=8$	
	$u=9$	
	$u=10$	
	$u=11$	
	$u=12$	
	$u=13$	
	$u=14$	
	$u=15$	

DCT
wHT
SLT
DB4

STD

How to determine time x feequery extent af a functions $h(t)$.in the time frequery plane.

Let $P_{h}(t)=\frac{|h(t)|^{2}}{\|h(t)\|^{2}} \quad$ probability desist y for.
Mean : $\mu_{t}=\frac{1}{\|h(t)\|^{2}} \int_{-\infty}^{+\infty} t|h(t)|^{2} d t$
variance $\sigma_{t}^{2}=\frac{1}{/ / h(t) \|^{2}} \int_{-\infty}^{+\infty}\left(t-\mu_{t}\right)^{2} /\left.h(t)\right|^{2} d t$

$$
F T\{h(t)\}=H(f)
$$

$$
P_{H}(f)=\frac{|H(f)|^{2}}{\|H(f)\|^{2}} \quad-\quad \text { probabity density fu }
$$

mean $\quad \mu_{f}=\frac{1}{\|H(f)\|^{2}} \int_{-\infty}^{+\infty} f|H(f)|^{2} d f$
variane $\sigma_{f}^{2}=\frac{1}{\|H(f)\|^{2}} \int_{-\infty}^{+\infty}\left(f-\mu_{f}\right)^{2}|H(f)|^{2} d f$

(a) Basis function localization in the time-frequency plane. (b) A standard basis function, its spectrum, and location in the time-frequency plane. (c) A complex sinusoidal basis function (with its real and imaginary parts shown as solid and dashed lines, respectively), its spectrum, and location in the time-frequency plane.

Recall Haar basis f_{n} :

$$
\begin{aligned}
& {\left[\begin{array}{l}
\psi_{s, t}(t)=2^{s / 2} \psi\left(2^{s} t-t\right) \quad \text {, s inter } \\
\psi_{j, k}(x)=2^{j} \psi\left(2^{j} x-k\right) \\
\longrightarrow F, T \cdot\left\{\psi\left(2^{s} t\right)\right\}=\frac{1}{\left|2^{s}\right|} \psi\left(\frac{f}{2^{s}}\right) \\
\text { for } s>0 \longrightarrow \text { spectrum is stretched } \\
\text { for } s<0 \longrightarrow \text { spectrum is compressed }
\end{array}\right.}
\end{aligned}
$$

Time and frequency localization of 128-point Daubechies basis functions.

