Methods of Bit Assignment (cont.)

Huffman Coding: A practical method to achieve near-optimum
performance

Example:

Message Codeword Probability

s 0o P, (%) - g — 2,,(1).

2, 1110 Py (5‘5)

o 101 p (%)

2, 111 Pe (%) : 8, (;‘3)

Figure 10.16 Illustration of codeword generation in Huffman coding. Message
_possibilities with higher probabilities are assigned with shorter codewords.

‘e Uniform-length codeword: 3 bits/message

e Huffmancoding: -1 +%-3 +%-3+%-4+1-3+%-4= % bits/
message =1.813 bits/message

e Entropy: —(§log,3 + % log, & + % log, % + % log, % + 4 log, & + 5 log,
%) = 1.752 bits/message
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Methods of Bit Assignment (cont.)

Vector Case

fi1:.f» Prob.
) N -1
ros»To Po Entropy = - Yy p;i° log, p;
. - - i=0 s o
risTy P
ry, 7o P2
Comments:

1. Finding p; for a large number of elements in the vector
is difficult

2. Law of diminishing returns comes into play

3. Huffman Coding can be used
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Arithmetic Coding

¢ Why not use Huffman?

e Can show rate of Huffman code is within
I S 0086 of Entropy.

P, . = Prob. of most frequent symbol
e Example:
ud source = {ay,a,,a,}

P(a;) = 095  P(a,) = 0.02
P(as) = 0.03

Entropy = 0.335  bits/symbol
Huffman : 1.05 bits/symbol

===> Huffman 213% of Entropy!!




Mechanics of Arithmetic Coding

e Two steps:

1) Generate a tag

2) Assign a binary code to the tag
e Tag Generation:

A sequence of symbols from an
alphabet source with a given Pdf
results 1n a unique sub-interval

in [0,1].




Example of Tag Generation:

* A ={ay,a, ay} P(a,;) = 0.7

P(a,) = 0.1 P(ay) = 0.2

* Suppose we encode ay,a,, d,

0 0 0.49 0.546

)
(<

' 0.5391 / 0.5558+

L 0.546- 0.5572+
\tg
(.70

0.56 0.56

aq %) aj

e Interval [0.546, 0.56] uniquely specifies
sequence (ay, a,, )




Deciphering the Tag:

e Suppose we know 3 symbols resulted
in subinterval [0.546, 0.56]

e Decode the symbols?

e [s the first symbol a;, or a, or as?

a; — [0, 0.7]
sy [0.7, 0.8]
a5 [0.8, 1]

e Is the second symbol a,,a,, or

a, [0.49, 0.56]
as [0.56, 0.7]
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Generating a binary code:

Uniqueness:

Consider sequence of symbols

%
X = ay,a3,ay, ...,4q, ...43, Q5.

%
Compute P(X).

If 1d source ==> easy to compute

Write down binary representation of the

-
point in the middle of subinterval for X

Truncate it to

{log 1% 1+1 bits
P(X)

e Can show it 1s unique.



Example Generating a binary code:

Consider subinterval [0.546, 0.56]

Midpoint : 0.553

P(X) = P(a,)P(a,)P(a;) = 0.014

9

# of bits = {log
P(X)

Binary Representation of 0.553

XSS & g b g
2 20 2 2

= 0.1 00011011...
Truncate to 8 bits ===>

Binary Representation:

10001101

_|_

1

29

1+1 = ‘8 bits
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Efficiency of Arithmetic Code

e We can show

H(X)<1, <H(X)+ 2
m

e m # of symbols in sequence
e [, = average length per symbol

e H(X) = entropy of source

e Assumes 11d source.

e Observe: By increasing length of
sequence, can get arbitrarily close

to entropy.




Dictionary Techniques

e Huffman and arithmetic coding assumed
1.1.d. sources

e Most sources are correlated

e Main 1dea: 1 Build a list of commonly
occuring patterns

2 Transmit index in the list.

e Exploits fact that certain patterns

recur frequently.

e Consider 2 cases
1. Static Dictionary

2. Dynamic Dictionary




e Suppose Five letter alphabet source:

Static Dictionary:

A =1{a,b,c,d,r}

e Using statistics of source, build dictionary

ad |ac |ab| r | d | ¢ | b | a |Entry
111|110 | 101 | 100 | 011 | 010 | 001 | 000 | Code
e Encode abracadabra
1. Read ab ---------- > 101
2. Read ra---------- > not 1n dictionary
3. Read r --—----- > 100
4. Read ac ---------- > @110
S0 L.
101 100 110 111 101 101 000
ab r ac ad ab r a

e Opposite of Huffman coding:




J

Adaptive Dictionary:

s ;{ Lempel 1977 + 1978

e |71 -—-- > 1971 LZ2 === > 1978
e [.Z1 discussed Here.

e Basic idea:

Dictionary portion of previously
encoded sequence

e Sliding window:

1) search buffer
2) lookahead buffer

match pointer

X Xabpaxada bla|p|p|a

p

b= = A -

>

V S
search buffer

p a

Look ahead buffer




Example

.cabracadabrarrarrad . . .

- Window = 13
- look ahead buffer
- Search buffer = 7

= 6

¢C abraca

dabrar

07

Fadsus

1. No match to d ---> <@, 0, C(d) >

clabracad

L(eT‘em\
(B=2 > 1 =1
2. Match for a: <{ g=4 --—> ] =1
B=T > 1 =X
<7, 4, C(r) >

adabrart

___________
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3. Ma/h for r:

O0=1 -5 [ =1
0=3 --> [ =5

<3 5 C@d >

|

exceeds the
boundary between
search and

look ahead buffer




Encoding steps

1. Move search pointer back until match in
search buffer

2. Offset 2 Distance of pointer from look
ahead buffer

3. Do consecutive symbols of pointer match
also?

4. Search the search buffer for the longest
match

>

5. length of match = # of consecutive symbol
match.

6. Send <o,/ c)
o = otfset

[ = match length
C & = codeword of symbol in LA buffer,
following match

Example: < 7,2, codeword for a >




Adaptive Dictionary

e Why sendg/?
® just in case no match

Y

Weal

| log S|+ [log ,w]|+[log LA |

e Total # of bits:

S = size of search buffer
W = Size of window (search + LA)

A = size of source alphabet




What to Code (Classification of Image Coding Systems)

1. Wavefor__m Coder (code the intensity)

¢ PCM (Pulse Code Modulation) and its improvements
e DM (Delta Modulation)

e DPCM (Differential Pulse Code Modulation)

¢ Two-channel Coder'

2. Transform Coder (code transform coefficients of an image)

e Karhunen-Loeve Transform
e Discrete Fourier Transform

e Discrete Cosine Transform

3. Image Model Coder

e Auto-regressive Model for texture

e Modelling of a restricted class of images

Note: Each of the above can be made to be adaptive

. A




Waveform Coder

PCM Coding

‘.F(“';Th) . Unm Em. _— :}‘Cﬂ,)f@
Gu.aujgr
J£(7‘1,J N) —— | Men- LA.U.A-JH —_— i —| Ain- /.:»*LEZ,:/-«'/;'-'I l.ﬁ,
Buarti BT |

A
1(n,n)
e very simple
e typically requires over 5-6 bits/pixel for good quality

e false contours for low-bit rate case



Improvements of PCM (cont.)

2. Roberts’_Pseudo-Noise Technique with Noise Reduction:

Transmitter | Recelver
! +

f(n, n, Uniform Lo X . Noise 2

(7 7 quantizer I * reduction > finy, ny)
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|
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3. Roberts’ Pseudo-Noise Technique and Highpass/Lowpass~
Filtering: Py

= 3.«4:-».."{ 5?_[’

1% \. /
A N \ f\FI /;Fg. ///
\./[, \
¥
S A ————
S ) Ry
// .

If there were not HighpéésQJOWPass Filtering:
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Improvements of PCM

.. Roberts’ Pseudo-Noise Technique:

Transmitter

% Uniform
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quantizer
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Figure 10.21 Example of quantization
poise reduction in PCM speech coding.
(2) Segment of noise-free voiced
speech; (b) PCM-coded speech at 2 bits/
sample; (c) PCM-coded speech at 2 bis/
sample by Roberts's pseudonoise tech-
nique; (d) PCM-coded speech at 2 bits/
sample with quantization noise reduc-
tion.
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(c) (d)

Figure 10.22 Example of quanuzation noise reduction in PCM image coding. (a) Orniginal
image of 312 » 312 pixels: (b) PCM-coded image at 2 buts pixel: (¢} PCM-coded image at
2 bits pixel by Roberis’s pseudonoise technigue: (d) PCM-coded image at 2 bus pixel with
Quaniizanon noise reguclion.

Sec. 10.3  Waveform Coding 623




Delta Modulation (DM)

f(ny,ny: signal, f(n;,n,): coded signal

Transmitter
Transmitter

A = ..A_ r — é

+ 1 bit e 2 TR

fin)

Y

quantization

== fln - 1) { + e

Receiver

Receiver

fln = 1) =t = ———

!
[
[
I
!
-

i Slope overload

]

Granular noise

——

Figure 10.26 Granular noise and slope-
> overload distortion in delta modulation.

e needs over 2-3 bits/pixel to get good quality
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Siope overioag

Granular noise _

Figure 10.26 Granular noise and slope-

-1 oveérload distoruon 1n delta modulaticr

quirements. and the step size A is chosen through some compromise between the
WO requirements

Figure 10.27 illustrates the performance of a DM svstem. Figures '10.27(a)
and (b) show the results of DM with step sizes of A = 8% and 15%. respectivels.
of the overall dynamic range of f(n,. n.). The original image used is the 312 -«
S12-pixelimage in Figure 10.22(2). When A is small [Figure 10.27(a)]. the granular
noise is reduced. but the slope overload distortion problem is severe and the
resulting image appears blurred. As we increase A [Figure 10.27(b)]. the slope
overload distortion 1s reduced. but the graininess in the regions where the signal
varies siowly is more pronounced.

“

(a (b}

Figure 10.27 Example of delta-modulation (DA -coded imuge. The onginal image used i

the 1mage 1n Figure 10.22(a), (4) DM-coded imuge with A = 8% of the overall dvnamic

range. NMSE = 14.8%. SNR = N.3 dB: (b} DM-coded image with 3 = 157, NMSE =
77 SNR = 10.1 dB.

626 Image Coding  Chap. 10




Figure 10.28 DM-coded 1mage at 2
bus‘pixel. The onginal image used 1s the
image 1n Figure 10.22(a). NMSE =
2.4%.SNR = 16.2dB.

To obtain good quality image reconstruction using DM without significant
graininess or slope overload distortion. 3-4 bits/pixel is tvpically required. A bit
rate higher than 1 bivpixel can be obtained in DM by oversampling the original
analog signal relative to the sampling rate used in obtaining f(n,. n,). Oversam-
pling reduces the slope of the digital signal f(n) so a smaller A can be used without
increasing the slope overload distortion. An example of an image coded by DM
at 2 bits/pixel is shown in Figure 10.28. To obtain the image in Figure 10.28. the
size of the original digital image in Figure 10.22(a) was increased by a factor of
two by interpolating the original digital image by a factor of two along the horizontal
direction. The interpolated digital image was coded by DM with A = 12% of the
dyvnamic range of the image and the reconstructed image was undersampled by a
factor of two along the horizontal direction. The size of the resulting image is the
same as the image in Figure 10.27, but the bit rate in this case is 2 bits/pixel.

10.3.3 Differential Pulse Code Modulation

Differential pulse code modulation (DPCM)-can be viewed as a generalization of
DM. In DM. the difference signal e(n) = f(n) — f(n — 1) is quantized. The
most recently coded f(n — 1) can be viewed as a prediction of f(n) and e(n) can
be viewed as the error between f(n) and a prediction of f(n). In DCPM. a
prediction of the current pixel intensity is obtained from more than one previously
coded pixel intensity. In DM. only one bit is used to code e(n). In DPCM. more
than one bit can be used in coding the error.

A DPCM svstem is shown in Figure 10.29. To code the current pixel intensity
f(ny.n3). f(n,. n,) is predicted from previously reconstructed pixel intensities. The
predicted value is denoted by f'(n,, n.). In the figure. we have assumed that
fn, = 1. n). f(nyona = 1), f(n, = 1, n, — 1), ... were reconstructed prior
to coding f(n,.n.). We are attempting to reduce the variance of

Sec.10.3  Waveform Coding 627
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Differential Pulse Code Modulation (DPCM)

f(ny, ny) ¢ original image

f(ny, ny) : reconstructed image

" } + e(n,, n,) =
. ﬂ‘, n + C
Transmitter ’ O

- A

f'iny, ny)

Prediction

|

Previously coded pixel intensities
flny, =1, ny), fin,, ny = 1),
finy =1, na= o

:

1
| S R R S S -

e the Auto-regressive Model parameters are obtained
from the image by solving a linear set of equations
or by a Markov process assumption

e(n,, n,) + > f(n,, n,)

Receiver

f'(n,, ny)

Prediction

finy =1, ny), flny, ny= 1),
l'ln‘ - 1,”2_ 1},-..

® requires 2-3 bits/pixel for good quality image
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where R, is the region of (k,. k.) over which a(k,. k) is nonzero. Typically,
f'(ny.ny) is obtained by linearly combining f(n, = 1, ny).f(n,. n, = 1). and
f(n, = 1.n, — 1). Since the prediction of f(n,. n,) is made in order to reduce
the variance of e(n,, n,). it is reasonable 10 esumate a(k,. k;) by minimizing

Ele*(n,.n.)) = E[(f(n,.n.) - EZR alk, k)f(ny = ky.na = k2)F). (10.40)
(ki.k2)1€ Ry

Since f(n,. n,) is a function of a(k,. k,) and depends on the specific quantizer used.
solving (10.40) is a nonlinear problem. Since f(n,. n.) is the quantized version of
f(n,. n,). and is therefore a reasonable representation of f(n,. n.). the prediction
coetiicients a(k,. k.) are estimated by minimizing

E|(ftny. na) = EE alk,. k)f(n, = ky.ny = k:)ﬁ}. (10.41)
(hi.kzls Re
Since the funcuon in (10.41) minimized is a quadratic form of a(k,. &.). solving
(10.41) involves solving a linear set of equations in the form of
Rili.ly) = D3 atky. k)Rl — ky. 1y = ky) (10.42)
Lk k21 Ra
where f(s1,. n.) is assumed to be a stationary random process with the correlation
function R.(n). n;). The linear equations in (10.42) are the same as those used
in the estimation of the autoregressive model parameters discussed in Chapters 3
and 6.

Figure 10.30 illustrates the performance of a DPCM svstem. Figure 10.30
shows the result of a DPCM system at 3 bits'pixel. The original image used is the
image in Figure 10.22(a). The PCM system used in Figure 10.30 is a nonumiform
quantizer. The prediction coefficients a(k,. k-) used to generate the example are

Figure 10.30 Example of differenual
pulse code modulauon (DPCM )-coged
image at 3 bits'pixel. Onginal image
used is the image in Figure 10.22(a).
NMSE = 2.2%.SNR = 16.6 dB

|
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