1 Subspaces

Definition 1. W is said to be a subspace of a vector space V over a field F if $W \subseteq V$ and W is itself a vector space.

For proving that W is a subspace of V, if we know that W is a subset of V, then all that remains is to verify that

1. $w_1, w_2 \in W \implies w_1 + w_2 \in W$
2. $\forall \alpha \in F, \; \alpha \cdot w \in W$

Consider $(C(\mathbb{R}, \mathbb{R}), \mathbb{R})$ the space of continuous functions from \mathbb{R} to \mathbb{R} (which we have previously established as a vector space). Let’s define the set of linear functions as

$$L = \{l(\cdot) : l(x) = \alpha x \text{ for some } \alpha \} \text{ (not all } l(\cdot) \text{ need the same } \alpha)$$

We can show that L is a subspace of C by showing that linear combinations of functions in L result in a function in L. Similarly, we can show that the set of affine functions

$$A = \{a(\cdot) : a(x) = \alpha x + \beta \text{ for some } \alpha, \beta \} \text{ (not all } a(\cdot) \text{ need the same } \alpha, \beta)$$

is also a subspace of C.

2 Functions and Matrix Rank

Definition 2 (Rank Nullity Theorem). For a linear map $A : U \to V$, we have:

$$\text{rank}(A) + \text{dim}(N(A)) = \text{dim}(U)$$

Remark 1. Rank-Nullity theorem is a powerful result in linear algebra and allows us to bound the rank of linear maps (and their compositions as we will see below in Sylvester’s Inequality.)

Remark 2. The proof of Rank-Nullity theorem is also very insightful. In particular, suppose that $\{y_1, \ldots, y_k\}$ is a basis of $N(A)$, then we can extend this basis as $\{y_1, \ldots, y_k, z_1, \ldots, z_{n-k}\}$ to get a basis for U, where $n = \text{dim}(U)$. The proof hints that the range of A can be spanned by $\{A(z_1), \ldots, A(z_{n-k})\}$. Moreover, these vectors are linearly independent in V and hence form a basis for $R(A)$.

Definition 3 (Sylvester’s Inequality). For two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, we can bound the rank of their product AB by the following inequality

$$\text{rank}(A) + \text{rank}(B) - n \leq \text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\}$$
We recall that in order for a linear map \(A : U \to V \) to be surjective, its range must equal its codomain \((R(A) = V) \). For an operator to be injective, it must have a trivial nullspace \((N(A) = \{0_U\}) \). In terms of matrix rank, this means that \(\text{rank}(A) = \dim(V) \) (for surjectivity) and \(\text{rank}(A) = \dim(U) \) (for injectivity).

We can represent compositions of matrix operators as multiplication of their matrix representations, so we can use Sylvester’s inequality to reason about the possible injectivity or surjectivity of a composition of linear operations.

Remark 3. Note that Sylvester’s inequality can be very conveniently proved by noting that

\[
AB : \mathbb{R}^p \to \mathbb{R}^m \equiv A : R(B) \to \mathbb{R}^m,
\]

and then using the rank-nullity theorem on the map \(A \) defined above.

3 Matrix Representation of a Linear Map

For a linear map \(A : U \to V \), we can obtain the matrix representation \(A \) of \(A \) using the following 5-step algorithm:

1. Identify the basis \(B_U = \{u_1, \ldots, u_n\} \) for the domain \(U \).
2. Identify the basis \(B_V = \{v_1, \ldots, v_m\} \) for the co-domain \(V \).
3. For each element \(u_i \in B_U \), determine \(y_i := A(u_i) \).
4. Represent each \(y_i \) in the basis \(B_V \) of co-domain. Let the co-ordinates obtained for \(y_i \) through this process are given by the vector \(\alpha_i \in \mathbb{R}^m \).
5. The \(i \)th column of \(A \) is then given by \(\alpha_i \).

4 Change of Basis

Consider \(\{u_i\}_{i=1}^n, \{\tilde{u}_i\}_{i=1}^n \) : two bases of \(U \).
\(\{v_j\}_{j=1}^m, \{\tilde{v}_j\}_{j=1}^m \) : two bases of \(V \).

\(A \): matrix representation of \(A \) with \(\{u_i\}_{i=1}^n, \{v_j\}_{j=1}^m \).
\(\tilde{A} \): matrix representation of \(A \) with \(\{\tilde{u}_i\}_{i=1}^n, \{\tilde{v}_j\}_{j=1}^m \).

\(R \) (or \(\tilde{R} \)): \(n \times n \) matrix whose \(i \)th column is \(u_i \) (or \(\tilde{u}_i \)).
\(S \) (or \(\tilde{S} \)): \(m \times m \) matrix whose \(j \)th column is \(v_j \) (or \(\tilde{v}_j \)).

For any \(x \in U, x = RX = \tilde{R}\tilde{x} \implies \xi = P\tilde{\xi} \), where \(P = R^{-1}\tilde{R} \).
For \(y = A(x) \in V, y = SY = \tilde{S}\tilde{y} \implies \tilde{\eta} = Q\eta \), where \(Q = \tilde{S}^{-1}S \).
In addition, \(\eta = A\xi \).

\[\therefore \tilde{\eta} = QAP\tilde{\xi} \implies \tilde{A} = QAP \]
Remark 4. One can also directly determine \bar{A} using the 5-step algorithm described in Section 3.

5 Singular Value Decomposition

To solve an SVD problem:
1. Solve for V (or U) using AA^\top (or $A^\top A$)
2. Solve for the other unitary matrix using $\sigma_i u_i = Av_i$

6 Lipschitz Continuity

- Recall flow chart from discussion for when we can prove/disprove global and local lipschitz properties
- Just because we haven’t proven something is lipschitz doesn’t mean there is no unique solution.

7 Bellman-Gronwall Lemma

Theorem 4. Let $u(\cdot)$ be a nonnegative, piecewise continuous function on $[0, T]$ which satisfies

$$u(t) \leq C_1 + \int_{t_0}^t k(\tau)u(\tau)d\tau$$

for some constant $C_1 \geq 0$ and a nonnegative integrable function k. Then

$$u(t) \leq C_1 \exp \left(\int_{t_0}^t k(\tau)d\tau \right),$$

for $0 \leq t_0 < t \leq T$.

Remark 5. The above result holds as it is if C_1 is a non-negative function of time.

Remark 6. Bellman-Gronwall lemma is very useful for the perturbation analysis of a system. We did examples of this in discussion and in the homework.
8 Dynamical Systems

\((U, Y, \Sigma, s, r): \) (input, state, output, state transition function, output read-out map).

- **Input:** \(U \subset \{ u : [0, \infty) \rightarrow U \} \) (Note that \(U\) is a function space.)
- **Output:** \(Y \subset \{ y : [0, \infty) \rightarrow Y \} \) (Note that \(Y\) is a function space.)
- **State Space:** \(\Sigma\), a vector space (typically \(\mathbb{R}^n\))
- **State transition function:** \(s : \mathbb{R} \times \mathbb{R} \times \Sigma \times U \rightarrow \Sigma\) with \(s(t, t_0, x_0, u[t_0, t]) = x(t)\)
- **Output read-out map:** \(r : \mathbb{R} \times \Sigma \times U \rightarrow Y\) with \(r(t, x(t), u(t)) = y(t)\)
- **Response function:** composition of \(s\) and \(r\): \(\rho : \mathbb{R} \times \mathbb{R} \times \Sigma \times U \rightarrow Y\) with \(\rho(t, t_0, x_0, u[t_0, t]) = y(t)\)

9 The State-Transition Matrix \(\Phi\)

Definition 5. The matrix-valued function \(\Phi(\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{n \times n}\) is called the state-transition matrix of \(A\) if \(\Phi(\cdot, t_0)\) solves the matrix differential equation

\[
\dot{X}(t) = A(t)X(t), \quad X(t) \in \mathbb{R}^{n \times n}
\]

\(X(t_0) = I\).

Properties

1. The solution of \(\dot{x} = A(t)x, s(t, t_0, x_0)\) is given by \(s(t, t_0, x_0) = \Phi(t, t_0)x_0\)
2. \(\forall t, t_0, t_1 \in \mathbb{R}^+, \Phi(t, t_0) = \Phi(t, t_1)\Phi(t_1, t_0)\)
3. \([\Phi(t, t_0)]^{-1} = \Phi(t_0, t)\)
4. \(\det \Phi(t, t_0) = \exp \int_{t_0}^{t} \text{trace}(A(\tau))d\tau\)

10 The Matrix Exponential

Proposition 6 (Matrix Exponential). The state-transition matrix for the system

\[
\dot{X}(t) = AX(t), \quad X(t) \in \mathbb{R}^{n \times n}
\]

\(X(t_0) = I\)

is the matrix exponential \(\Phi(t, t_0) = e^{A(t-t_0)} = \sum_{k=0}^{\infty} \frac{A^k(t-t_0)^k}{k!}\).