EECS 210 Fall 2006 Tu, Th 12:30-2 400 Cory

Applied Electromagnetic Theory

Office Hours M, (W), 11AM Tu, Th, (F) 10AM Prof. A. R. Neureuther, 509 Cory Hall, 2-4590 neureuth@eecs

Homework # 4: Due 5 PM Friday Oct 6th

5.1) **Retarded Potential (time-domain)**: Consider the scalar potential produced by two timevarying sources., One source is at $x_1 = (0,0,0)$ and has charge $q_1(t)$, the other is at $x_2 = (a,0,0)$ and has charge $q_2(t)$.

a) Using the scalar potential from a point charge write down a general expression for $\Phi(x,y,z,t)$. b) Find the Electric field contributed by this potential E(x,y,z,t) far from the source in the z = 0 plane.

c) Now suppose $q_2(t) = q_1(t-\tau)$. Find the value of τ that for large positive distances on the x-axis will synchronize the contributions from the two sources regardless of the time-variation of $q_1(t)$. d) Repeat part c) for a large distance in a direction $n = (\cos\phi, \sin\phi, 0)$ i.e. $(R\cos\phi, R\sin\phi, 0)$ where R >> a.

e) Show how the delay can be described through using $(x_2 \text{ dot } n)$.

f) Find E(R,0,0,t) E(R,0,0,t) where R >> a, and show that it is given by $E_1E_1 + E_2E_2$ plus a cross term proportional to E_1E_2 and involving the delay between the sources.

5.2) **Retarded Potential (frequency-domain)**: Now reconsider the two point time-varying source in Problem 5.1).

a) Find an expression for $\Phi(x,y,z,\omega)$.

b) Find the Electric field contributed by this potential $E(x,y,z,\omega)$ far from the source in the z = 0 plane. Hint use $n = (\cos\phi, \sin\phi, 0)$.

c) Using the curl E Maxwell equation find $H(x,y,z,\omega)$ far from the source in the z = 0 plane.

d) Show that $H(x,y,z,-\omega) = H^*(x,y,z,\omega)$

e) For the case of $q_2(t) = q_1(t-\tau)$, find $q_2(\omega)$ in terms of $q_1(\omega)$.

f) Find the product $E(R,0,0, \omega) E(R,0,0, \omega)$ where R >> a, and show that it is given by $E_1E_1 + E_2E_2$ plus a cross term proportional to E_1E_2 and involving the phase between the sources and $(x_2 \text{ dot } n)$.

4.3) **Green's Function in Time-harmonic**: Consider the interior of a grounded box defined by the six planes, x = 0, y = 0, c = 0, x = a, y = b, and c = z. A time-varying charge source is given by $q(x,y,z,t) = \delta(x-d)\delta(y-e)\delta(z-f)\delta(t-\tau)$.

a) Convert this source to a Fourier representation using $q(x,y,z,\omega)$

b) Use the N-dimensional eigenfunctions and the scaler wave equation to find the solution for the potential inside the box.

c) Describe what happens to the potential when the time-harmonic frequency contribution $\omega^2 \mu \epsilon$ hits an eigenvalue.

c) Suppose instead you had used the N-1 eigenfunction expansion method what would happen when $\omega^2 \mu\epsilon$ hits an eigenvalue and then increases further?

Buzz Lighyear sez "To infinity and beyond."