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I. (50 Points) Plane Waves:  

( )

( )zykxni

y

zykxni

x

y
G

y
G

eEE

eEE
6.03.02

0

6.03.02

0

0.1

5.0
++

++

=

=

λ
π

λ
π

 

 
a) (10 Points) Find the angle that this wave makes with the y- axis in the glass. 
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b) (10 points) Write out the full (x,y,z) plane wave behavior of the transmitted field. 
(Leave the phasor amplitude and relative phase as an unknown). 
 
ky and kz are continuous =  0.742(1.5) and 0.6(1.5) = 1.113 and 0.9 
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c)  (20 Points) Find all six components of the vectors E and H traveling in the upward 
direction inside the glass.  
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Then consolidate constant and vector terms. 
 
 
c) (10 Points) Evaluate the Poynting vector component in the y-direction due to waves 
traveling in the +y-direction in the glass. 
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Then plug in values from above. 
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Glass  n = 1.5 

λ = 600nm 

y 

Air  n = 1.0 



II. (50 Points) Boundary Value Problem: 
 
 
 
 
 
 
 
 
a) (15 points) Find the potential inside the inside the box when the potential on the plane 

x = a/2 is given by )2sin()3sin(|),( 2/ c
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b) (15 points) Find the charge on the plane x= a/2 associated with this potential. 
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Plug in field F from above and use derivative of sinh = gamma times cosh. 
Both sides of a/2 contribute equally. 
 
c) (20 Points) Write one sentence that names and outlines the methodology for each of 
the possible ways that could be used to solve for the potential produced by a charge 
distribution inside the box above.   
 
Maximum of 20 points 
N-1 expansion in 3 directions plus a required superposition to integrate in 3rd dimension 
across the charge cloud.(5+3 points) 
N expansion (no integration needed) (4 points) 
Integral representation with Dirichlet BC and then integrate over charge cloud. (4 points) 
Image charge with 3d array of charges. (4 points) 
  
•    
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III. (50 Points) Integral Representation 
 
 
 
 
 
 
 
a) (12 Points) Use the concept of a general Green’s function to write an integral equation 
for the potential at a point (x1, y1, z1) where x1 < a/2. 
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Here the volume has x range 0 to ONLY a/2 and, y range 0 to b and z ranges 0 to c. 
 
b) (12 Points) Specify the boundary conditions on the Green’s function such that only the 
potential on the plane a/2 is needed to find the potential at a point (x1, y1, z1) where x1 
< a/2. 
 
G zero on both x = 0 and a/2, and G = 0 on b = 0 and b, and G = 0 on z = 0 and c. 
 
 
c) (12 Points) Write down an eigenfunction expansion for this Green’s Function. 
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d) (14 Points) Describe how the integral representation in a) could be converted into an 
integral equations to find the charge on the walls for x < a/2.  
 
Set ρ = 0 inside the half-volume. 
Change Green’s function to at least have normal derivative zero on x = a/2 plane. 

Substitute 
ε
σ

−=
∂
Φ∂

= 2/| axn
 Then expand σ as function of y and z in N charge patches σn. 

Then take limit of integral representation as (x,y,z) approaches (a/2, y, z) in center of 
each patch to get N equations. Put in matrix form and solve for the charges σn on the N 
patches 
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