Continuous and discrete time

There are two different dialects for modeling change over time. Thus far we have modeled real-life events using differential equations and initial conditions. For example, the voltage across a capacitor connected to a voltage source by a resistor is fully described by the following differential equation and initial conditions.

\[
\frac{d}{dt} v_C(t) = -\frac{1}{RC} v_C(t) + \frac{1}{RC} v_{in}(t), \quad v_C(0) = v_0
\]

(1)

Abstracting away particulars, continuous-time scalar linear systems can be represented in variants of the following form:

\[
\frac{d}{dt} x(t) = \lambda x(t) + \mu u(t), \quad x(0) = x_0.
\]

(2)

This discussion will introduce discrete-time scalar linear systems, which have models similar to the following:

\[
x[t + 1] = a x[t] + b u[t], \quad x[0] = x_0.
\]

(3)

Notice that evolution is represented by defining the transition from \(x[t] \) to \(x[t + 1] \). The state \(x \) is not a continuous function of time, but a sequence of individual moments. Can you think of systems in life that are naturally more susceptible to discrete-time modeling?

1 Differential equations with piecewise constant inputs

1. Let \(x(\cdot) \) be a solution to the following differential equation:

\[
\frac{d}{dt} x(t) = \lambda (x(t) - u(t)).
\]

(4)

Let \(T > 0 \). Let \(x[\cdot] \) “sample” \(x(\cdot) \) as follows:

\[
x[n] = x(nT).
\]

(5)

Assume that \(u(\cdot) \) is constant between samples of \(x(\cdot) \), i.e.

\[
u(t) = u[n] \quad \text{when} \quad nT \leq t < (n + 1)T.
\]

(6)

For a general time-step \(n \), write \(x[n + 1] \) in terms of \(x[n] \) and \(u[n] \). Conclude that the sampled system of a continuous-time linear system is in fact a discrete-time linear system.

Answer

As \(u = u[n] \) is constant between samples \(x[n] \) and \(x[n + 1] \), the following differential equation and initial conditions describe what is happening to \(x \) during this interval:

\[
\frac{d}{dt} x(t) = \lambda (x(t) - u[n]), \quad x(nT) = x[n].
\]

(7)
Let’s use the entire RHS of the differential equation as a change of variables from x to z. (Other changes of variables are possible, e.g. $z_{\text{alt}} = x(t) - u(t)$.)

$$z(t) = \lambda(x(t) - u[n]) \quad (8)$$

By differentiating both sides of this relationship, we can achieve a differential equation for z.

$$\frac{d}{dt} z(t) = \frac{d}{dt} (\lambda(x(t) - u[n])) \quad (9)$$

$$= \lambda \frac{d}{dt} x(t) - \lambda \frac{d}{dt} u[n] \quad (10)$$

As $u[n]$ is a constant, $\frac{d}{dt} u[n] = 0$.

$$= \lambda \frac{d}{dt} x(t) \quad (11)$$

Apply the differential equation for x.

$$= \lambda \left(\lambda(x(t) - u[n]) \right) \quad (12)$$

We can recognize the expression in the parentheses as $z(t)$.

$$\frac{d}{dt} z(t) = \lambda z(t) \quad (13)$$

A solution to this equation is of the form $z(t) = Ke^{\lambda t}$, where K is a constant to be determined. By reversing Eqn. 8, we arrive at a solution for $x(t)$—where, still, K remains to be determined.

$$x(t) = \frac{1}{\lambda} z(t) + u[n] \quad (14)$$

$$= \frac{1}{\lambda} Ke^{\lambda t} + u[n] \quad (15)$$

We will determine K by insisting that our solution comply with the initial conditions of Eqn. 7.

$$x(nT) = \frac{1}{\lambda} Ke^{\lambda(nT)} + u[n] = x[n] \quad (16)$$

$$K = \frac{\lambda}{e^{\lambda(nT)}} (x[n] - u[n]) \quad (17)$$

Now we have enough to evaluate $x((n + 1)T)$, by evaluating $x(t)$ at $(n + 1)T$.

$$x((n + 1)T) = \frac{1}{\lambda} \left(Ke^{\lambda(n+1)T} + u[n] \right) \quad (18)$$

$$= \frac{1}{\lambda} \left(\frac{\lambda}{e^{\lambda(nT)}} (x[n] - u[n]) e^{\lambda(n+1)T} \right) + u[n] \quad (19)$$

$$= e^{\lambda T} x[n] + \left(1 - e^{\lambda T} \right) u[n] \quad (20)$$
Rewrite \(x((n+1)T) \) as \(x[n+1] \):

\[
x[n+1] = e^{\lambda T}x[n] + \left(1 - e^{\lambda T}\right)u[n]
\]

(21)

and we are done.

2. Let \(T = 1 \) and \(\lambda = -100 \). Sketch a piecewise constant input \(u[\cdot] \) of your choice, then sketch \(x(t) \). Mark \(x[n] \). Your sketch doesn’t have to be exact, but you should be able to supply analysis to justify why it looks a certain way: how are you using the fact that \(\lambda T \) is large and negative?

Answer

A typical drawing might look similar to this:

![Diagram](image)

Notice that the displacement between \(x(t) \) and its moving target \(u(t) \) is always in exponential decay (it is proportional to \(z(t) \)). Because \(\lambda T \) is large and negative, \(e^{\lambda T} \approx 0 \), so

\[
x[n+1] = e^{\lambda T}x[n] + \left(1 - e^{\lambda T}\right)u[n]
\]

(22)

\[
x[n+1] \approx u[n]
\]

(23)

3. Let \(T = 1 \) and \(\lambda = -1 \). Define \(u[n] \) as follows:

\[
u[n] = \begin{cases}
1, & \text{if } n \text{ is even} \\
-1, & \text{if } n \text{ is odd}
\end{cases}
\]

(24)
Answer

Notice how u, which is x’s target, is flipping so quickly that x never gets close to the finish line. It gets partway there and then is told to turn around. An approximate sketch (with features exaggerated) would look like this: