1. Changing behavior through feedback

In this question, we discuss how feedback control can be used to change the effective behavior of a system.

(a) Consider the scalar system:

\[x(i + 1) = 0.9x(i) + u(i) + w(i) \]

where \(u(i) \) is the control input we get to apply based on the current state and \(w(i) \) is the external disturbance.

Is the system stable? If \(|w(i)| \leq \epsilon \), what can you say about \(|x(i)| \) at all time if you further assume that \(u(i) = 0 \) and the initial condition \(x(0) = 0 \)? How big can \(|x(i)| \) get?

(b) Suppose that we decide to choose a control law \(u(i) = kx(i) \) to apply in feedback. For what values of \(\lambda \) can you get the system to behave like:

\[x(i + 1) = \lambda x(i) + w(i) \]

vis-a-vis the disturbance \(w(i) \)? How would you pick \(k \)?

(c) For the previous part, which \(k \) would you choose to minimize how big \(|x(i)| \) can get?

(d) What if instead of a 0.9, we had a 3 in the original equation? What, if anything, would change?

(e) Now suppose that we have a vector-valued system with a vector-valued control:

\[\vec{x}(i + 1) = A\vec{x}(i) + B\vec{u}(i) + \vec{w}(i) \]

where we further assume that \(B \) is an invertible square matrix.

Suppose we decide to apply linear feedback control using a square matrix \(K \) so we choose \(\vec{u}(i) = K\vec{x}(i) \).

For what values of matrix \(G \) can you get the system to behave like:

\[\vec{x}(i + 1) = G\vec{x}(i) + \vec{w}(i) \]

vis-a-vis the disturbance \(\vec{w}(i) \)? How would you pick \(K \) given knowledge of \(A, B \) and the desired goal dynamics \(G \)?

2. Eigenvalues Placement in Discrete Time

Consider the following linear discrete time system

\[\vec{x}(t + 1) = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) + \vec{w}(t) \]
(a) Is this system controllable from $u(t)$?

Answer: We calculate

$$\mathcal{R}_2 = [AB, B] = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

Observe that \mathcal{R}_2 matrix is full rank and hence our system is controllable.

(b) Is the linear discrete time system stable?

Answer: We have to calculate the eigenvalues of matrix A. Thus,

$$\det(\lambda I - A) = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = -2$$

Since the magnitude of the eigenvalue λ_2 is greater than 1, the system is unstable.

(c) Derive a state space representation of the resulting closed loop system using state feedback of the form $u(t) = [k_1, k_2] \vec{x}(t)$

Answer: The closed loop system using state feedback has the form

$$\begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot ([k_1, k_2] \vec{x}(t))$$

$$= \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot [k_1, k_2] \vec{x}(t)$$

Thus, the closed loop system has the form

$$\vec{x}(t+1) = \begin{bmatrix} k_1 & 1 + k_2 \\ 2 & -1 \end{bmatrix} \vec{x}(t)$$

(d) Find the appropriate state feedback constants, k_1, k_2 in order the state space representation of the resulting closed loop system to place the eigenvalues at $\lambda_1 = -\frac{1}{2}, \lambda_2 = \frac{1}{2}$

Answer: $k_1 = 1, k_2 = -\frac{11}{8}$

(e) Is the system now stable?

Answer: Yes

(f) Suppose that instead of $\begin{bmatrix} 1 & 0 \end{bmatrix} u(t)$ in (5), we had $\begin{bmatrix} 1 & 1 \end{bmatrix} u(t)$ as the way that the discrete-time control acted on the system. Is this system controllable from $u(t)$?

(g) For the part above, suppose we used $[k_1, k_2]$ to try and control the system. What would the eigenvalues be? Can you move all the eigenvalues to where you want? Give an intuitive explanation of what is going on.

Contributors:

- Anant Sahai.
- Ioannis Konstantakopoulos.
- John Maidens.