1 Introduction

![Capacitor charging through a circuit with a resistor. We can imagine that the voltage source is changing with time.](image)

In the previous note we learned to solve for the transient Voltage $V(t)$ on a capacitor charging up through a resistor. Recall that we solved the following differential equation:

$$\frac{d}{dt} V(t) = -\frac{V(t)}{RC} + \frac{V_{dd}}{RC}$$

Figure 1: Capacitor charging through a circuit with a resistor. We can imagine that the voltage source is changing with time.

Using the same kind of change a change of variables as we did in the previous note, we can solve the above equation to get for $t \geq 0$,

$$V(t) = V_{dd}(e^{-\frac{t}{RC}} - 1)$$
while \(V(t) = 0 \) for \(t < 0 \). This is the response of the circuit to inputs of the form \(V_s(t) = \begin{cases} 0 & \text{if } t < 0 \\ -V_{dd} & \text{if } t \geq 0 \end{cases} \).

Can we take what we know to build to understand more interesting inputs?

2 Time-varying piecewise constant inputs: two illustrative cases

Having analyzed these basic cases we want to consider how to deal with inputs that change over time in a more interesting fashion. We have a strategy that we think should work — treat piecewise constant inputs the same way that we dealt with circuits with switches changing configuration. Make the state (charge on the capacitor) be instantaneously constant across the configuration change, and just solve the differential equation with that initial condition.

Let us start by considering the most basic changing input that we can think of: A voltage turning on to some value \(V_{dd} \) and then turning off.

![Figure 2: On and Off input: On for 10τ. Here \(\tau = RC \) is the RC time constant for the circuit.](image)

As always when analyzing these more complex problems we try to phrase them in terms of problems that we already know how to solve. We can look at this case as a combination of two piecewise constant cases: A constant zero input steady till some time \(T \) switching instantly to a steady constant 1 input till time \(T + D \) (here \(D \) is some constant representing how long we hold at \(V_{dd} \)), falling back to zero again for the rest of time beyond \(T + D \).

If \(D \gg \tau \) then the circuit has the opportunity to settle to steady state. We treat the circuit in 2 different time intervals. The first with initial condition at 0 and the second with initial condition at \(V_{dd} \): the value that the circuit settled to in the first interval (from \(T \) to \(T + D \)).

Before we continue let us establish some notation. Let us use \(V_i(t_{int}) \) to denote the voltage on the capacitor during the \(i^{th} \) time interval that we are analyzing. Let \(t \) be absolute time starting at 0 while let \(t_{int} \) be the time from the beginning of the \(i^{th} \) interval till now. This latter time internal to the interval is useful conceptually.

Let us start by analyzing the first interval:

Analyzing the circuit for time \(t \in [0, 10\tau] \) with initial condition \(V(0) = 0 \) and constant input \(V_{dd} \) starting at time \(t = 0 \), we get the differential equation:

\[
\frac{d}{dt} V(t) = -\frac{V(t)}{RC} + \frac{V_{dd}}{RC}
\]

\(V(0) = 0 \)
Recall the solution to this type of differential equation is:

\[V(t) = ke^{-\frac{t}{RC}} + V_{dd} \]

Here \(k \) is some constant that we can solve for using initial conditions. Plugging in the initial condition we get:

\[V(0) - V_{dd} = k \]
\[k = V_{dd} \]
\[V_1(t_{int}) = V(t) = V_{dd}(1 - e^{-\frac{t}{RC}}) \quad t \in [0, 10\tau] \]

The solution to this differential equation is the same as the charging capacitor case. Since the input is held at \(V_{dd} \) until time \(10\tau \) the circuit has time to settle to essentially steady state. We can see this by plugging in \(t = 10\tau \):

\[V(10\tau) = V_1(10\tau) = V_{dd}(1 - e^{-\frac{10\tau}{RC}}) \]
\[= V_{dd}(1 - e^{-10}) \approx V_{dd}(1 - 0.00004539992) \approx V_{dd} \]

Thus we show that by time \(t = 10\tau \) the capacitor has approximately reached the steady state voltage \(V_{dd} \). We can now think about what happens for the next chunk of time \(t \in [10\tau, 20\tau] \).

Having solved for \(V(10\tau) \), we now have a new initial condition for the second interval \(V(10\tau) = V_1(10\tau) = V_2(0) \approx V_{dd} \).

Using this information, the definition \(t_{int} = t - 10\tau \), and the steps above we can solve for \(V_2(t_{int}) \):

\[\frac{d}{dt} V(t) = \frac{-V(t)}{RC} + 0 \]
\[V_2(t) = V_1(10\tau) \approx V_{dd} \]

Recall the solution to this type of differential equation is \(V(t) = ke^{-\frac{t}{RC}} \). Plugging in the initial condition we get \(V_2(t_{int}) = V_{dd}(e^{-\frac{t_{int}}{RC}}) \). And so \(V(t) = V_{dd}(e^{-\frac{t}{RC}}) \quad t \in [10\tau, 20\tau] \). Here we also see that \(10\tau \) after the input switch, the voltage \(V(t) \) again seems to reach steady state.

\[V(20\tau) = V_2(10\tau) = V_{dd}(e^{-\frac{20\tau}{RC} - 10}) \]
\[= V_{dd}(e^{-10}) \approx V_{dd}(0.00004539992) \approx 0. \]

We can see what is happening in Figure 3. This is one kind of behavior — when the transients are isolated from each other. However there is also the case when the duration \(D < \tau \) or \(D \) is not too much greater than \(\tau \). In such a case our circuit does not have the opportunity to settle into steady state before the input changes back to 0. In such a case, we would need to calculate the exact voltage at the time our input changes to a 0 so that we could use an accurate initial condition for the second interval. Consider the case illustrated in Figure 4 where the input is only \(V_{DD} \) for a duration of one \(\tau = RC \) time constant.
Since the conditions for time $t \in [0, 1\tau]$ are the same as the case before we end up with the same equation for $V_1(t)$:

$$V_1(t_{int}) = V(t) = V_{dd}(1 - e^{-\frac{t}{RC}}) \quad t \in [0, 1\tau]$$

However now since the input V_{dd} is only for 1τ the circuit does not get a chance to reach steady state before transitioning to the next stage: when the input shifts from V_{dd} to 0.

$$V(1\tau) = V_{dd}(1 - e^{-1})$$

$$\approx V_{dd}(1 - 0.36787944117) \neq V_{dd}.$$

Thus, now we can no longer use V_{dd} as our initial condition. Instead now we have to explicitly calculate our initial condition using the information we got from solving for $V_1(t_{int})$ in the first time interval. As defined above let the function for the voltage in the second interval be $V_2(t_{int})$ such that $V_2(t_{int}) = V(t) \quad t \in [1\tau, 10\tau]$ where $t_{int} = t - 1\tau$. Having solved for $V_1(1\tau)$ we now have a new initial condition $V(1\tau) = V_2(0) = V_{dd}(0.6321205582)$.

Solving the differential equation for the second interval and plugging in our initial condition we get:

$$V_2(t_{int}) = V_{dd}(0.6321205582)(e^{-\frac{t_{int}}{RC}})$$
in terms of time internal to that interval or in terms of absolute time:

\[V(t) = V_{dd}(0.63212055882)(e^{-\frac{t}{RC}}) \quad t \in [1\tau, 10\tau] \]

This is illustrated in Figure 5.

\[\begin{array}{c}
\text{Amplitude} \\
0 \quad 0.5 \quad 1 \quad \text{Time} \\
0 \quad 1\tau \quad 10\tau
\end{array} \]

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure5.png}
\caption{\(V(t) \) for On and Off input: On for 1\(\tau \)}
\end{figure}

2.1 More examples of what can happen

At this point, we can use what we know to see many different examples.

2.2 Case 1: Input is at 0 and \(v_{dd} \) long enough to reach steady state

\[\begin{array}{c}
\text{Amplitude} \\
0 \quad 0.5 \quad 1 \quad \text{Time} \\
0 \quad 10\tau \quad 20\tau \quad 30\tau \quad 40\tau \quad 50\tau \quad 60\tau
\end{array} \]

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure6.png}
\caption{Case 1 Input: Input where both states reach steady state}
\end{figure}

The first case to consider is when our repeated time varying input is at \(V_{dd} \) and 0 long enough to reach steady state. This is illustrated in Figure 6. The output voltage is illustrated in Figure 7.
2.3 Case 2: Input is at 0 long enough to settle and does not settle at V_{dd}

Figure 7: Case 1 Output: Transient voltage for repeated switch when both reach steady state

Figure 8: Case 2 Input: Input where only one state reaches settles

The second case to consider is when our repeated time varying input is at 0 long enough to reach steady state but not at V_{dd} long enough to do so (or vice versa). This is illustrated in Figure 8. The output voltage is illustrated in Figure 9.

Figure 9: Case 2 Output: Output where only one state of the input settles
2.4 Case 3: The input is at neither 0 nor V_{dd} long enough to settle.

![Figure 10: Case 3 Input: Input where both states of the input do not settle](image)

The third case to consider is when our repeated time varying input is not at 0 or V_{dd} long enough to reach steady state for either extreme. This is illustrated in Figure 10. The output voltage is illustrated in Figure 11.

For this kind of case, we had no choice but to go interval by interval:

(a) Solve the differential equation to get a function for voltage changing with time.

(b) Solve for the initial condition using the previous interval’s solution.

(c) Plug in the initial condition to the solution of the differential equation for this interval.

Notice that in this case, the magnitude of the voltage on the capacitor seems to have a slight upward trajectory.

Can you figure out what this sawtooth shape will eventually start looking like? It will stay a sawtooth, and you know that it will have each tooth being 3τ long. But where will the top and bottom of the teeth be? This is an interesting exercise to think about.

![Figure 11: Case 3 Output: Transient voltage for repeated switch when both states of the input do not settle: Notice how the peak voltage goes gently up over time.](image)
3 Building up to general inputs that are functions of time but not necessarily piecewise constant

3.1 Guessing/deriving a solution for general input functions

Now that we know how to deal with repeated transients we want to move towards analyzing any function of \(t \). That is, we would like to be able to deal with a differential equation of the form:

\[
\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(t)
\]

where \(u(t) \) is any function of time. However, up till now we have only dealt with piecewise constant inputs and repeated cases of these piecewise constants.

To analyze these more complicated functions, we can start by approximating them as being piecewise constant over fixed interval widths \(\Delta \) — which we know how to solve from what we have seen so far. That is, we can analyze these like repeated transients by finding new initial conditions and using those at every transition point.

![Figure 12: Our style of approximating a general function by something that is piecewise constant. This should remind you of a Riemann sum.](image)

Given some initial condition, let our approximated problem take the form of a differential equation with a piecewise constant input. Namely, for the \(i \)-th interval for \(t \in (i\Delta, (i+1)\Delta) \):

\[
\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(i\Delta)
\]

Where \(u(i\Delta) \) is a constant value that is the value of the input function \(u(t) \) at time \(t = i\Delta \).

This parallels \(\frac{d}{dt} V(t) = -\frac{V(t)}{RC} + \frac{V_{dd}}{RC} \) where \(\lambda = \frac{-1}{RC} \) and where our input function is just the constant \(V_{dd} \) or 0 as we saw in the previous section.

Using what we know, we can solve the differential equation for this interval to get:

\[
V(t_{int}) = ke^{\lambda t_{int}} + u(i\Delta),
\]

where \(t_{int} = t - i\Delta \) is the time internal to this interval, and the initial condition for this interval \(v_i = k + u(i\Delta) \). Consequently:

\[
V(t_{int}) = (v_i - u(i\Delta))e^{\lambda t_{int}} + u(i\Delta).
\]
We can use the above formulation to solve for the transients over distinct intervals of width Δ. We can use this transient behavior to solve for the value of $V(t)$ at the end of the Δ long interval to get the initial condition for the next interval, and continue the process for the rest of the input function. Using this process we can start to approximate the solutions to differential equations of the form:

$$\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(t)$$

(3)

where $u(t)$ is some arbitrary input function. To proceed with this method, let us define some terms.

Let $V_i(t)$ be the solution of the differential equation for the i-th time interval. Let t be the absolute time starting time at 0 and let $t_{int} = t - i\Delta$ be the relative time that starts at 0 at the beginning of each interval (the i defining the i-th interval is implicit whenever we are using t_{int}). Let v_i be the initial condition for the i-th time interval and $u(i\Delta)$, which is just a sample of our input function $u(t)$ at time $t = i\Delta$, be the constant input for the i-th time interval.

Consequently,

$$v_i = V_{i-1}(t_{int} = \Delta)$$

$$V(t) = V_0(t_{int} = t) \quad t \in [0, \Delta]$$

$$V(t) = V_1(t_{int} = t - \Delta) \quad t \in [\Delta, 2\Delta]$$

$$V(t) = V_2(t_{int} = t - 2\Delta) \quad t \in [2\Delta, 3\Delta]$$

By the equations above we have:

$$V_0(t_{int}) = (v_0 - u(0))e^{t_{int}\lambda} + u(0)$$

$$V_1(t_{int}) = (v_1 - u(\Delta))e^{t_{int}\lambda} + u(\Delta)$$

$$V_2(t_{int}) = (v_2 - u(2\Delta))e^{t_{int}\lambda} + u(2\Delta)$$

Since each interval is Δ long, the initial condition for $v_{i+1} = V_i(t_{int} = \Delta)$. As we try to evaluate $V(t)$ at a certain point we have to go through the process of finding the transient behavior, using it to find the initial condition, plugging in that initial condition to find the next transient behavior, over and over until we reach the time interval of interest. We can grind this out in a relatively mindless fashion:

$$v_1 = (v_0 - u(0))e^{\lambda\Delta} + u(0)$$

$$V_1(t_{int}) = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - a_1\right)e^{t_{int}\lambda} + u(\Delta)$$

$$v_2 = V_1(\Delta) = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta)$$

$$V_2(t_{int}) = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta) - u(2\Delta)\right)e^{t_{int}\lambda} + u(2\Delta)$$

$$v_3 = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta) - u(2\Delta)\right)e^{\lambda\Delta} + u(2\Delta)$$

$$V_3(t_{int}) = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta) - u(2\Delta)\right)e^{\lambda\Delta} + u(2\Delta) + u(3\Delta)$$

$$v_4 = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta) - u(2\Delta)\right)e^{\lambda\Delta} + u(2\Delta) + u(3\Delta)$$

$$V_4(t_{int}) = \left(\left((v_0 - u(0))e^{\lambda\Delta} + u(0)\right) - u(\Delta)\right)e^{\lambda\Delta} + u(\Delta) - u(2\Delta)\right)e^{\lambda\Delta} + u(2\Delta) + u(3\Delta) + u(4\Delta)$$

$$V_4(t_{int}) = v_0 e^{\lambda(4\Delta + t_{int})} + u(0)\left(e^{\lambda(3\Delta + t_{int})} - e^{\lambda(4\Delta + t_{int})}\right) + u(1\Delta)\left(e^{\lambda(2\Delta + t_{int})} - e^{\lambda(3\Delta + t_{int})}\right) + u(2\Delta)\left(e^{\lambda(\Delta + t_{int})} - e^{\lambda(2\Delta + t_{int})}\right)$$
But as you can see, chaining through the transient effects of all these constant inputs to get to some time t can be quite annoying. There has to be a pattern to this. And indeed, if we look closely, we can spot the pattern in the equations. Substituting $t_{out} = t - 4\Delta$ into the equation for the 4th interval we get:

$$V(t) = v_0 e^{\lambda(t)} + u(0)(e^{\lambda(t-\Delta)} - e^{\lambda(t)}) + u(1\Delta)(e^{\lambda(t-2\Delta)} - e^{\lambda(t-\Delta)}) + u(2\Delta)(e^{\lambda(t-3\Delta)} - e^{\lambda(t-2\Delta)}) + u(3\Delta)(e^{\lambda(t-4\Delta)} - e^{\lambda(t-3\Delta)}) + u(4\Delta)(1 - e^{\lambda(t-4\Delta)})$$

If we focus on the end of this interval $t = 5\Delta$, we can represent $1 = e^{\lambda(t-5\Delta)}$. With this substitution we can rewrite the above sum as:

$$V(t = 5\Delta) = v_0 e^{\lambda(t)} + u(0)(e^{\lambda(t-\Delta)} - e^{\lambda(t)}) + u(1\Delta)(e^{\lambda(t-2\Delta)} - e^{\lambda(t-\Delta)}) + u(2\Delta)(e^{\lambda(t-3\Delta)} - e^{\lambda(t-2\Delta)}) + u(3\Delta)(e^{\lambda(t-4\Delta)} - e^{\lambda(t-3\Delta)}) + u(4\Delta)(e^{\lambda(t-5\Delta)} - e^{\lambda(t-4\Delta)})$$

and capture the regularity using summation notation:

$$V(t = 5\Delta) = v_0 e^{\lambda(t)} + \sum_{i=0}^{4} u(i\Delta)(e^{\lambda(t-(i+1)\Delta)} - e^{\lambda(t-i\Delta)})$$

Looking at the pattern for this sum of 4, we can extrapolate/guess this to be a sum of any $t = n\Delta$.

$$V(t = n\Delta) = v_0 e^{\lambda(t)} + \sum_{i=0}^{n} u(i\Delta)(e^{\lambda(t-(i+1)\Delta)} - e^{\lambda(t-i\Delta)})$$

(4)

$$= v_0 e^{\lambda(t)} + \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)}(e^{-\lambda\Delta} - 1).$$

(5)

When solving for $V(t = n\Delta)$ this way, we get an estimate of the voltage on the capacitor when the true input is not piecewise constant to begin with. But we can make this estimate better by making our Δ decrease and get infinitesimally small. Then, for any fixed actual time t, the corresponding n would go to ∞ as $\Delta \rightarrow 0$. Making this precise, we can choose $\Delta = \frac{t}{n}$ and then take a limit:

$$\lim_{n \rightarrow \infty} V(t) = v_0 e^{kt} + \lim_{n \rightarrow \infty} \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)}(e^{-\lambda\Delta} - 1)$$

This sum looks almost like a Reimann sum, except that it has $(e^{-\lambda\Delta} - 1)$ instead of something proportional to the small $\Delta = \frac{t}{n}$. To simplify this, let us recall the Taylor series approximation for e^x.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Noticing that $\lambda\Delta$ is small, keeping the first two terms of the exponential’s Taylor expansion, and plugging this into the above equation we get:
\[
\lim_{n \to \infty} V(t) \approx v_0 e^{\lambda t} + \lim_{n \to \infty} \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)}(1 - \lambda\Delta - 1)
\]

\[
= v_0 e^{\lambda t} + \lim_{n \to \infty} \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)}(-\lambda\Delta)
\]

\[
= v_0 e^{\lambda t} + \lim_{\Delta \to 0} (-\lambda) \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)\Delta}
\]

The sum: \(\sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)\Delta}\) should remind you of a Riemann sum from calculus. Using this knowledge we can turn the infinite summation into an integral:

\[
\lim_{\Delta \to 0} \sum_{i=0}^{n} u(i\Delta)e^{\lambda(t-i\Delta)\Delta} = \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta.
\]

This gives us the limiting solution:

\[
V(t) = v_0 e^{\lambda t} - \lambda \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta
\]

We made some approximations along the way, but intuitively, all of those approximations get more and more accurate as \(\Delta \to 0\). So now have a generalized way for solving differential equations with any input that is a function of \(t\)! Note that in all our calculations, we did not make any assumptions about \(\lambda\) or even the input being real. Thus our derivation is equally applicable to complex \(\lambda\) and complex inputs.

Also notice that we started off trying to solve the differential equation:

\[
\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(i\Delta)
\]

This was simply to match the differential equation when solving for the voltage on the capacitor. We can use the same methods as above to derive a solution to the differential equation:

\[
\frac{d}{dt} x(t) = \lambda x(t) + u(t)
\]

and get

\[
x(t) = x_0 e^{\lambda t} + \int_0^t e^{\lambda(t-\theta)}u(\theta)d\theta.
\]

This, you will see discussed in detail in discussion to make sure you understand.

3.2 Checking our solution

During the previous section’s derivation, we might have seemed a little aggressive with approximations and limits for your taste. This is understandable. You have definitely seen limits like the above in calculus, as well as approximations like the above in calculus. But you might not have seen them both together. We need to check to see if our solution makes any sense and then understand if it is indeed correct.

3.2.1 Plug in a known function

In order to check our solution to the differential equation, the first thing to do is plug in an input whose solution we already know and trust. Let us plug in a constant input that is 1 for time \(t \geq 0\). Using our solution for \(V(t)\) we get:

\[
V(t) = v_0 e^{\lambda t} + (-\lambda) \int_0^t 1 e^{\lambda(t-\theta)}d\theta
\]
where for our capacitor circuit $\lambda = \frac{1}{RC}$ and the initial condition $v_0 = 0$.

$$V(t) = v_0e^{\lambda t} + (-\lambda) \int_0^t 1e^{\lambda(t-\theta)}d\theta$$

$$= v_0e^{\lambda t} + \left(\frac{1}{RC}\right) \int_0^t 1e^{\frac{\lambda}{RC}(t-\theta)}d\theta$$

$$= \left(\frac{1}{RC}\right) \int_0^t 1e^{\frac{\lambda}{RC}(t-\theta)}d\theta$$

$$= \left(\frac{1}{RC}\right)(RC) \left[e^{\frac{\lambda}{RC}(t-\theta)} \right]_0^t$$

$$= [e^{\frac{\lambda}{RC}(t-t)} - e^{\frac{\lambda}{RC}(t-0)}]$$

$$= 1 - e^{\frac{\lambda}{RC}(t)}$$

This is exactly the equation for a charging capacitor: $V(t) = V_{dd}\left(1 - e^{\frac{\lambda}{RC}}\right)$ where $V_{dd} = 1$. Which is exactly what we expect with this constant input!

So this makes sense. The solution also clearly makes sense for a zero input.

3.2.2 Plug into the original differential equation

We can further verify this by plugging the guessed solution $V(t) = v_0e^{\lambda t} - \lambda \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta$ into the original differential equation:

$$\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(t).$$

Doing so:

$$\frac{d}{dt} V(t) = \frac{d}{dt} \left[v_0e^{\lambda t} + (-\lambda) \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta \right]$$

We can then use the fundamental theorem of calculus to compute the derivative[^1]

$$\frac{d}{dt} V(t) = \lambda v_0e^{\lambda t} + (-\lambda) \left[1e^{\lambda(t-t)}u(t) + \int_0^t u(\theta)\lambda e^{\lambda(t-\theta)}d\theta \right]$$

$$= \lambda v_0e^{\lambda t} + (-\lambda) \left[u(t) + \lambda \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta \right]$$

$$= \lambda \left[v_0e^{\lambda t} - \lambda \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta \right] - \lambda u(t).$$

Notice that the expression within the square brackets is just $V(t) = v_0e^{\lambda t} - \lambda \int_0^t u(\theta)e^{\lambda(t-\theta)}d\theta$ and so replacing this, we get $\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(t)$. This means our guessed solution satisfies the original differential equation!

[^1]: Recall that the fundamental theorem can be used to apply the derivative to the integral in a chain rule like fashion. We first take the derivative of the upper limit of the integral times the upper limit plugged into the inside of the integral. To this, we add the integral of the derivative of the inside of the integral. The latter term can be viewed as corresponding to bringing the derivative inside a summation. The first term corresponds to understanding that the number of terms essentially depends on t, and so the “last term” in the sum has to do with the derivative with respect to the upper limit of the integral. If you don’t remember this, look up the Fundamental Theorem of Calculus in Leibniz form.
For the initial condition, \(V(0) = v_0 e^{\lambda t} - \lambda \int_0^0 u(\theta) e^{\lambda (t-\theta)} d\theta = v_0 e^0 + 0 = v_0 \), so that matches up as well.

Now that we have showed a solution to the differential equation it is important to consider uniqueness. You will do this in your homework! The key trick is to consider the difference \(z(t) = x(t) - y(t) \) of two candidate solutions \(x(t) \) and \(y(t) \). If you take the derivative \(\frac{d}{dt} z(t) \), you will see that this must solve the differential equation \(\frac{d}{dt} z(t) = \lambda z(t) \) with no input, together with the initial condition \(z(0) = x(0) - y(0) = 0 \). Since this differential equation has a unique solution \(0 e^{\lambda t} = 0 \) for all \(t \geq 0 \), it must be the case that \(z(t) = 0 \) and hence \(x(t) = y(t) \). So solutions must be unique. Because we have found one, we have found the only one!

3.3 Let’s try this out

Using the above formula, let us try it out for some interesting inputs. Assuming we have the same differential equation: \(\frac{d}{dt} V(t) = \lambda V(t) - \lambda u(t) \). Let us find an expression for \(V(t) \) when the input \(u(t) = t^k e^{\lambda t} \) for \(t \geq 0 \) and some \(k > -1 \) with the initial condition \(v_0 = 0 \).

Plugging into the solution above, we get:

\[
V(t) = (-\lambda) \int_0^t \theta^k e^{\lambda \theta} e^{\lambda (t-\theta)} d\theta = (-\lambda) \int_0^t \theta^k e^{\lambda \theta} d\theta = (-\lambda) e^{\lambda t} \int_0^t \theta^k d\theta = (-\lambda) e^{\lambda t} \theta^{k+1}_{k+1},
\]

This turns out to be important later, but for now, it is just an interesting example.

Contributors:

- Nikhil Shinde.
- Anant Sahai.
- Aditya Arun.