1. **A system governed by differential equations being controlled with piecewise constant inputs**

Working through this question will help you understand better differential equations with inputs and the sampling of a continuous-time system of differential equations into a discrete-time view. This is important for control, since it is often easier to think about doing what we want in discrete-time.

(a) Consider the scalar system

\[
\frac{dx(t)}{dt} = \lambda x(t) + u(t). \tag{1}
\]

Suppose that our \(u(t) \) of interest is *constructed* to be piecewise constant over durations of width \(\Delta \), which we assume to be 1 for this problem. In other words:

\[
u(t) = u(i) \text{ if } t \in [i, i+1) \tag{2}\]

Given that we start at \(x(i) \), where do we end up at \(x(i+1) \)?

Answer: Our differential equation takes the form,

\[
\frac{dx(t)}{dt} = \lambda x(t) + u(i) \tag{3}
\]

where \(u(i) \) is a constant value of some input function \(u(t) \) at time \(t = i \). First we solve the differential equation by guessing

\[
x(t) = \alpha e^{\lambda (t-i)} + \beta
\]

This gives,

\[
\frac{dx(t)}{dt} = \lambda \alpha e^{\lambda (t-i)}
\]

We know that this should equal to the right hand side of (3), so we get,

\[
\lambda \alpha e^{\lambda (t-i)} = \lambda x(t) + u(i) = \lambda (\alpha e^{\lambda (t-i)} + \beta) + u(i)
\]

\[\implies \lambda \alpha e^{\lambda (t-i)} = \lambda \alpha e^{\lambda (t-i)} + \lambda \beta + u(i)\]

Now using \(u(i) = u(i) \), we get,

\[
\beta = \frac{-u(i)}{\lambda}
\]

Further, we get,

\[
x(i) = \alpha e^{\lambda (i-i)} + \beta = \alpha + \beta
\]

And using, \(\beta = \frac{-u(i)}{\lambda} \) we get,

\[
x(i) = \alpha + \frac{-u(i)}{\lambda}
\]
\[\alpha = x(i) + \frac{u(i)}{\lambda} \]

So, we get that,
\[x(t) = (x(i) + \frac{u(i)}{\lambda})e^{\lambda(t-i)} - \frac{u(i)}{\lambda} \]
\[\implies x(i) = x(i)e^{\lambda(t-i)} + (\frac{e^{\lambda(t-i)} - 1}{\lambda})u(i) \]

Thus,
\[x(i+1) = x((i+1)) = x(i)e^{\lambda} + (\frac{e^{\lambda} - 1}{\lambda})u(i) \]

(b) Suppose that \(x(0) = x_0 \). **Unroll the implicit recursion you derived in the previous part to write** \(x(i+1) \) **as a sum that involves** \(x_0 \) **and the** \(u(j) \) **for** \(j = 0, \ldots, i \).

For this part, feel free to just consider the discrete-time system in a simpler form
\[x(i+1) = ax(i) + bu(i) \tag{4} \]

and you don’t need to worry about what \(a \) and \(b \) actually are in terms of \(\lambda \) and \(\Delta \).

Your derivation here is actually an example of a simple proof by induction.
Answer: Let’s look at the pattern starting with \(x(1) \), given that \(x(i+1) = ax(i) + bu(i) \),
\[x(1) = ax(0) + bu(0) \]
\[x(2) = ax(1) + bu(1) \]
\[\implies x(2) = a(ax(0) + bu(0)) + bu(1) = a^2(x(0)) + b(u(0))a + bu(1) \]
\[x(3) = ax(2) + bu(2) = a(a^2(x(0)) + b(u(0))a + bu(1)) + bu(2) \]
\[\implies x(3) = a^3x(0) + b(u(0))a^2 + u(1)a + u(2) \]

So, given this pattern, if we guess,
\[x(i) = a^i x(0) + b\sum_{j=0}^{i-1} u(j)a^{i-1-j} \tag{5} \]

Then, let’s see what we get for \(x(i+1) \),
\[x(i+1) = ax(i) + bu(i) = a(d^i x(0) + b\sum_{j=0}^{i-1} u(j)a^{i-1-j})) + bu(i) \]
\[\implies x(i+1) = d^{i+1}x(0) + b(\sum_{j=0}^{i-1} u(j)a^{i-1-j} + u(i)) = d^{i+1}x(0) + b(\sum_{j=0}^{i} u(j)a^{i-j}) \]

This satisfies \(5 \) for \(i+1 \) and hence our guess was correct!

This turns out to be a proof by induction, with base case \(x(1) = ax(0) + bu(0) \). Going from \(i \) to \((i+1) \) is the inductive step. This is how we transform a recursively found pattern into a rigorous proof!
(c) Suppose we have a system of differential equations with an input that we express in vector form:

\[
\frac{d}{dt} \vec{x}_c(t) = A \vec{x}_c(t) + \vec{b}u(t)
\]

(6)

where \(\vec{x}_c(t) \) is \(n \)-dimensional.

Suppose further that the matrix \(A \) has distinct eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) with corresponding eigenvectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \). Collect the eigenvectors together into a matrix \(V = [\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n] \).

If we apply a piecewise constant control input \(u(t) \) as in (2), and sample the system \(\vec{x}(i) = \vec{x}_c(i) \), **what are the corresponding** \(A_d \) and \(\vec{b}_d \) in:

\[
\vec{x}(i+1) = A_d \vec{x}(i) + \vec{b}_d u(i).
\]

(7)

Answer: First, we change coordinates so that \(\vec{x}_c(t) = V \vec{x}(t) \) and \(\vec{x}(t) = V^{-1} \vec{x}_c(t) \).

We have,

\[
(\vec{x}(i+1))[j] = (e^{\lambda_j}) (\vec{x}(i))[j] + \left(\frac{e^{\lambda_j} - 1}{\lambda_j} \right) (V^{-1} \vec{b})[j] (u(i))
\]

\[
\vec{x}(i+1) = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & e^{\lambda_n} \end{bmatrix} \vec{x}(i) + \begin{bmatrix} \frac{e^{\lambda_1} - 1}{\lambda_1} & 0 & \cdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & \frac{e^{\lambda_n} - 1}{\lambda_n} \end{bmatrix} V^{-1} \vec{b} u(i)
\]

Now we define the following notations,

\[
E_\Lambda = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & e^{\lambda_n} \end{bmatrix}
\]

\[
\Lambda^{-1} = \begin{bmatrix} \frac{1}{\lambda_1} & 0 & \cdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & \frac{1}{\lambda_n} \end{bmatrix}
\]

So,

\[
x(i+1) = V \vec{x}(i+1) = (VE_\Lambda V^{-1}) x(i) + (VA^{-1} (E_\Lambda - I) V^{-1} \vec{b}) u(i)
\]

Hence,

\[
A_d = (VE_\Lambda V^{-1})
\]

and

\[
\vec{b}_d = (VA^{-1} (E_\Lambda - I) V^{-1} \vec{b})
\]
(d) Suppose that $\vec{x}(0) = \vec{x}_0$. Unroll the implicit recursion you derived in the previous part to write $\vec{x}(i+1)$ as a sum that involves \vec{x}_0 and the $u(j)$ for $j = 0, \ldots, i$.

For this part, feel free to just consider the discrete-time system in a simpler form

$$\vec{x}(i+1) = A\vec{x}(i) + \vec{b}u(i)$$

and you don’t need to worry about what A and \vec{b} actually are in terms of the original parameters.

Answer: Let’s look at the pattern starting with $\vec{x}(1)$, given that $\vec{x}(i+1) = A\vec{x}(i) + \vec{b}u(i)$,

$$\vec{x}(1) = A\vec{x}(0) + \vec{b}u(0)$$

$$\vec{x}(2) = A\vec{x}(1) + \vec{b}u(1)$$

$$\implies \vec{x}(2) = A(A\vec{x}(0) + \vec{b}u(0)) + \vec{b}u(1) = A^2(\vec{x}(0)) + (u(0))A\vec{b} + \vec{b}u(1)$$

$$\vec{x}(3) = A\vec{x}(2) + \vec{b}u(2) = A(A^2(\vec{x}(0)) + (u(0))A\vec{b} + \vec{b}u(1)) + \vec{b}u(2)$$

$$\implies \vec{x}(3) = A^3\vec{x}(0) + (u(0))A^2 + (u(1))A + (u(2))\vec{b}$$

So, given this pattern, if we guess,

$$\vec{x}(i) = A^i\vec{x}(0) + \left(\sum_{j=0}^{i-1} u(j)A^{i-1-j}\vec{b}\right)$$

(9)

Then, let’s see what we get for $\vec{x}(i+1)$,

$$\vec{x}(i+1) = A\vec{x}(i) + \vec{b}u(i) = A(A^i\vec{x}(0) + \left(\sum_{j=0}^{i-1} u(j)A^{i-1-j}\vec{b}\right)) + \vec{b}u(i)$$

$$\implies \vec{x}(i+1) = A^{i+1}\vec{x}(0) + \left((\sum_{j=0}^{i-1} u(j)A^{i-1-j}) + u(i)\vec{b}\right) = A^{i+1}\vec{x}(0) + \left((\sum_{j=0}^{i} u(j)A^{i-j})\vec{b}\right)$$

This satisfies (9), for i+1 and hence our guess was correct!

This turns out to be a proof by induction, with base case $\vec{x}(1) = A\vec{x}(0) + \vec{b}u(0)$. Going from i to $(i+1)$ is the inductive step. This is how we transform a recursively found pattern into a rigorous proof!

2. Controlling states by designing sequences of inputs

This is something that you saw in 16A in the Segway problem. In that problem, you were given a semi-realistic model for a segway. Here, we are just going to consider a the following peculiar matrices chosen for intuitive ease of understanding what is going on:

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \quad \vec{b} = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}$$

Let’s assume we have a discrete-time system that follows the following “difference equation.”

$$\vec{x}(t + 1) = A\vec{x}(t) + \vec{b}u(t).$$
(a) We are given the initial condition $\vec{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Let’s say we want to achieve $\vec{x}(m) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ for some specific $m \geq 0$. We don’t need to stay there, we just want to be in this state at that time. What is the smallest m such that this is possible? What is our choice of sequence of inputs $u(i)$?

Answer: To ease notation, let $x(n) = \begin{bmatrix} x(n)[1] \\ x(n)[2] \\ x(n)[3] \\ x(n)[4] \end{bmatrix}$.

Note that $\vec{x}(1) = A\vec{x}(0) + \vec{b}u(0) = \begin{bmatrix} x(0)[2] \\ x(0)[3] \\ x(0)[4] \\ u(0) \end{bmatrix}$.

and so we see that if $n \geq 4$,

$$\vec{x}(n) = \begin{bmatrix} u(n-4) \\ u(n-3) \\ u(n-2) \\ u(n-1) \end{bmatrix}.$$

Hence, the smallest m is equal to 4, with $u(i) = (1, 2, 3, 4, \ldots)$ where the remaining terms are not relevant.

(b) What if we started from $\vec{x}(0) = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$? What is the smallest m and what is our choice of $u(i)$?

Answer: We see that $\vec{x}(1) = A\vec{x}(0) + \vec{b}u(0) = \begin{bmatrix} x(0)[2] \\ x(0)[3] \\ x(0)[4] \\ u(0)[4] \end{bmatrix}$.

so we only need $m = 1$ and input $u(i) = (4, \ldots)$.

(c) What if we started from $\vec{x}(0) = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$? What is the smallest m and what is our choice of $u(i)$?

Answer: We would still need $m \geq 4$ to achieve this. Input $u(i)$ should be equal to $(1, 2, 3, 4, \ldots)$.

Contributors:

- Anant Sahai.
- Nikhil Shinde.
• Sanjit Batra.
• Aditya Arun.
• Kuan-Yun Lee.