1. Constructing a Basis

Let’s consider a subspace of \mathbb{R}^3 called V which has the following property: for every vector in V, the first entry is equal to two times the sum of the second and third entries. That is, if \[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} \in V, \quad a_1 = 2(a_2 + a_3).
\]

Find a basis for V. What is the dimension of V?

Answer:

Any vector \vec{v} in V is going to look as follows:

\[
\vec{v} = \begin{bmatrix} 2(a_2 + a_3) \\ a_2 \\ a_3 \end{bmatrix} = a_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + a_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}
\]

Now, we consider the set of vectors $B = \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}$. The vectors are linearly independent. Furthermore, from the above equation, any vector $\vec{v} \in V$ can be expressed as a linear combination of the vectors in B (the corresponding coefficients are a_2 and a_3). This means that $V = \text{span}\{B\}$.

Therefore,

\[
B = \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}
\]

forms a basis for V.

$\text{dim}(B) = 2$ (there are two vectors in B), so the dimension of V is 2.

2. Exploring Dimension, Linear Independence, and Basis

In this problem, we are going to talk about the connections between several concepts we have learned about in linear algebra – linear independence, dimension of a vector space/subspace, and basis.

Let’s consider the vector space \mathbb{R}^m and a set of n vectors $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ in \mathbb{R}^m.

(a) For the first part of the problem, let $m > n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^m? Why/why not? What conditions would we need?

Answer:

No. $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ cannot form a basis for \mathbb{R}^m. The dimension of \mathbb{R}^m is m, so you would need m linearly independent vectors to describe the vector space. Since $n < m$, this is not possible.

(b) Let $m = n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^m? Why/why not? What conditions would we need?

Answer:

Yes, this is possible. The only condition we need is that $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ is linearly independent. If the vectors are linearly independent, since there are m of them, they will span \mathbb{R}^m.
(c) Now, let $m < n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^m? What vector space could they form a basis for?

Hint: Think about whether the vectors can be linearly independent.

Answer:

No, $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ cannot form a basis for \mathbb{R}^m. \mathbb{R}^m will be spanned by m linearly independent vectors. Any additional vectors in \mathbb{R}^m must already exist in the span of the previous vectors, and are therefore linearly dependent. Since $n > m$, some of the vectors have to be linearly dependent, so they cannot form a basis.

The two regimes—one where $n > m$ and one where $n < m$—give rise to two different classes of interesting problems. You might learn more about them in upper division courses!

3. Exploring Column Spaces and Null Spaces

- The **column space** is the possible outputs of a transformation/function/linear operation. It is also the span of the column vectors of the matrix.
- The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?

ii. What is the null space of A? What is its dimension?

iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?

iv. Do the columns of A form a basis for \mathbb{R}^2 (or \mathbb{R}^3 for (c))? Why or why not?

(a) \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]

Answer:

Column space: span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

Null space: span $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

The matrix is already row reduced. The column spaces of the row reduced matrix and the original matrix are the same.

Not a basis for \mathbb{R}^2.

(b) \[
\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}
\]

Answer:

Column space: span $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$

Null space: span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

The two column spaces are not the same.

Not a basis for \mathbb{R}^2.

(c) \[
\begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\]

Answer:
Section 2

The two column spaces are the same as the column span \(\mathbb{R}^2 \). This is a basis for \(\mathbb{R}^2 \).

(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6
\end{bmatrix}
\]

Answer:

Column space: \(\text{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \)

Null space: \(\text{span} \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\} \)

The two column spaces are not the same.

Not a basis for \(\mathbb{R}^2 \).

(e) \[
\begin{bmatrix}
1 & 2 & 1 \\
-1 & 0 & 3 \\
0 & -1 & -2
\end{bmatrix}
\]

Answer:

Column space: \(\text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\} \)

Null space: \(\text{span} \left\{ \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} \right\} \)

The two column spaces are not the same.

Not a basis for \(\mathbb{R}^3 \).