1. Mechanical Inverses

In each part, determine whether the inverse of A exists. If it exists, find it.

(a) $A = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

(b) $A = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix}$

(c) $A = \begin{bmatrix} 5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 0 & 4 \end{bmatrix}$

(d) $A = \begin{bmatrix} 5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 1 & 4 \end{bmatrix}$

2. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b}. We know that to get to \vec{c}, we can travel along \vec{a} for some amount α, then change direction, and travel along \vec{b} for some amount β. We want to find these two scalars α and β, such that we reach point \vec{c}. That is, $\alpha \vec{a} + \beta \vec{b} = \vec{c}$.

(a) First, consider the case where $\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\vec{c} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Find the two scalars α and β, such that we reach point \vec{c}. What if $\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$?

(b) Now formulate the general problem as a system of linear equations and write it in matrix form.
3. Span Proofs

Given some set of vectors \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \), show the following:

(a)

\[\text{span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\} = \text{span}\{\alpha \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}, \text{ where } \alpha \text{ is a non-zero scalar} \]

In other words, we can scale our spanning vectors and not change their span.

(b)

\[\text{span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\} = \text{span}\{\vec{v}_2, \vec{v}_1, \ldots, \vec{v}_n\} \]

In other words, we can swap the order of our spanning vectors and not change their span.

(c)

\[\text{span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\} = \text{span}\{\vec{v}_1 + \vec{v}_2, \vec{v}_2, \ldots, \vec{v}_n\} \]

In other words, we can replace one vector with the sum of itself and another vector and not change the span.